

2686570 Ontario Inc. o/a IPCF Baldwin Airport

Baldwin Airport Improvements

Preliminary Stormwater Management Brief

Rev 3 | 1 November 2024

This report takes into account the particular instructions and requirements of our client. It is not intended for and should not be relied upon by any third party and no responsibility is undertaken to any third party.

Job number 287943-00

Arup Canada Inc. 121 Bloor Street East, Suite 900 Toronto, ON, M4W 3M5 Canada arup.com

Document Verification

Project title	Baldwin Airport Improvements
Document title	Preliminary Stormwater Management Brief
Job number	287943-00
Document ref	287943-ARUP-XX-XX-RP-C-XX-001_Preliminary Stormwater Management Brief
File reference	

Revision	Date	Filename			
Draft VA.0 (issued as	August 1, 2024	Description	Preliminary Storr	nwater Manageme	ent Brief
Rev 0)			Prepared by	Checked by	Approved by
		Name	Michael Tran, Bailey Sadowsky		Joshua Battiston, Jason Do
		Signature	5 5		
VA.1	August 13, 2024	Filename	Preliminary Storr	nwater Manageme	nt Brief
(issued as Rev 0)		Description	Incorporates com	ments from McMi	llan LLP
			Prepared by	Checked by	Approved by
		Name	Michael Tran, Bailey Sadowsky	-	Joshua Battiston, Jason Do
		Signature			
VA.2 October 11, 2		Filename	Preliminary Stormwater Management Brief		
		Description			
			Prepared by	Checked by	Approved by
		Name	Michael Tran, Bailey Sadowsky		Joshua Battiston, Jason Do
		Signature			
VA.3	November 1, 2024	Filename	Preliminary Storr	nwater Manageme	ent Brief
		Description			
Baldwin Airport			Baldwin Airport Improvemen	te	
-	er 2024 Arup Canada Inc.		Preliminary Stormwater Mana		Page

	Prepared by	Checked by	Approved by
Name	Michael Tran, Bailey Sadowsky	Joshua Battiston	Joshua Battiston
Signature			
Issue Document Verification with Document \checkmark]		

Contents

Preface		4
1.	Introduction	6
1.1	Project Context	6
1.2	Purpose	6
2.	Standards, regulations and guidelines	6
3.	Data available	7
4.	Stormwater management approach	7
4.1	Water quantity	8
4.2	Water quality	8
4.3	Flood analysis	8
4.4	Erosion and sediment control	8
4.5	Airport design requirements	10
5.	Conceptual stormwater management design	11
5.1	Pre-development conditions	11
5.1.1	Site description	11
5.1.2	Hydrology	12
5.2	Post-development conditions	13
5.2.1	Site description	13
5.2.2	Hydrology	14
5.3	Conceptual design	15
5.3.1	Swales	16
5.3.2	Stormwater basin	16
5.3.3	Underground drainage network	16
5.3.4	Underground storage tank	16
5.3.5	Outfall to Black River	17
5.3.6	Culvert under driveway	17
6.	Conclusions	18
Closure		19

Tables

Table 1: Water quantity targets	8
Table 2: Water quality targets	8
Table 3: Pre-development hydrology	13
Table 4: Post-development hydrology	14
Table 5: Estimated change in peak discharge rates	15

Baldwin Airport Rev 3 | 1 November 2024 | Arup Canada Inc. Baldwin Airport Improvements Preliminary Stormwater Management Brief

Page 2

Table 6: Data received from LSRCA	21
Table 7: Water elevations for Black River cross-sections	24
Table 8: Difference in Water Elevations at Section 15	27
Table 9: Difference in Water Elevations at Section 14	27
Table 10: Difference in Water Elevations at Section 13	27
Table 11: Difference in Water Elevations at Section 12	28
Table 12: Difference in Water Elevations at Section 11	28
Table 13: Proposed Condition Water Elevation Model Results	28
Table 14: Cross Section 15 Existing vs Proposed Water Elevations	31
Table 15: Cross Section 14 Existing vs Proposed Water Elevations	32
Table 16: Cross Section 13 Existing vs Proposed Water Elevations	32
Table 17: Cross Section 12 Existing vs Proposed Water Elevations	32
Table 18: Cross Section 11 Existing vs Proposed Water Elevations	33

Figures

Figure 1: Pre-development site layout	11
Figure 2: Black River floodplain extent	12
Figure 3: Pre-development land cover	13
Figure 4: Post-development site layout	14
Figure 5: Post-development land cover	15
Figure 6: Existing culvert under driveway	18
Figure 7: Greenland V06 Hydrology Model	21
Figure 8: Existing Catchments used in Greenland Hydrology Model	22
Figure 9: Ministry of Agriculture and Food landuse and soil type map	23
Figure 10: Black River cross-sections	24
Figure 11: Floodplain limits within site boundary	25
Figure 12: HEC-RAS geometric data view of H_TRB_B4	26
Figure 13: Changes to Cross Section 15	29
Figure 14: Changes to Cross Section 14	29
Figure 15: Changes to Cross Section 13	30
Figure 16: Changes to Cross Section 12	30
Figure 17: Changes to Cross Section 11	31

Appendices

Appendix A - LSRCA model review	21
Appendix B - Calculations	34
Appendix C - Drainage drawings	59

Page 3

Preface

November 1, 2024

2686570 Ontario Inc. o/A IPCF Baldwin Airport c/o McMillan LLP, Brookfield Place 181 Bay Street, Toronto, ON M5J 2T3 Attn: Kailey Sutton

Baldwin Airport Improvements

Additional Services Scope #1 - Civil Engineering Services

Dear Kailey,

Arup Canada Inc. is pleased to submit this Report in support of your project's site improvements and our agreed scope of work with your team with reference to the above project.

Should you have any questions, please do not hesitate to contact the undersigned.

Yours sincerely,

Arup Canada Ltd.

Senior Planner

George Long

log by

Name

Signature

Civil Engineer

Joshua Battiston, P.Eng.

Name

Katinton, Signat

Statement of Qualifications and Limitations

The following report (the "Report") has been prepared by Arup Canada Inc. ("Arup") for the benefit of the Client ("Client") in accordance with the agreement between Arup and Client, including the scope of work detailed therein (the "Agreement").

The information, data, recommendations and conclusions contained in the Report (collectively, the "Information"):

- is subject to the scope, schedule, and other constraints and limitations in the Agreement and the qualifications contained in the Report (the "Limitations");
- represents Arup's professional judgement in light of the Limitations and industry standards for the preparation of similar reports;
- may be based on information provided to Arup which has not been independently verified;
- has not been updated since the date of issuance of the Report and its accuracy is limited to the time period and circumstances in which it was collected, processed, made or issued;
- must be read as a whole and sections thereof should not be read out of such context;
- was prepared for the specific purposes described in the Report and the Agreement; and
- in the case of subsurface, environmental or geotechnical conditions, may be based on limited testing and on the assumption that such conditions are uniform and not variable either geographically or over time.

Arup shall be entitled to rely upon the accuracy and completeness of information that was provided to it and has no obligation to update such information. Arup accepts no responsibility for any events or circumstances that may have occurred since the date on which the Report was prepared and, in the case of subsurface, environmental or geotechnical conditions, is not responsible for any variability in such conditions, geographically or over time.

Arup agrees that the Report represents its professional judgement as described above and that the Information has been prepared for the specific purpose and use described in the Report and the Agreement, but Arup makes no other representations, or any guarantees or warranties whatsoever, whether expressed or implied, with respect to the Report, the Information or any part thereof.

Without in any way limiting the generality of the foregoing, any estimates or opinions regarding probable construction costs or construction schedule provided by Arup represent Arup's professional judgement in light of its experience and the knowledge and information available to it at the time of preparation. Since Arup has no control over market or economic conditions, prices for construction labour, equipment or materials or bidding procedures, Arup, its directors, officers and employees are not able to, nor do they, make any representations, warranties or guarantees whatsoever, whether expressed or implied, with respect to such estimates or opinions, or their variance from actual construction costs or schedules, and accept no responsibility for any loss or damage arising therefrom or in any way related thereto. Persons relying on such estimates or opinions do so at their own risk.

Except (1) as agreed to in writing by Arup and Client; (2) as required by-law; or (3) to the extent used by governmental reviewing agencies for the purpose of obtaining permits or approvals, the Report and the Information may be used and relied upon only by Client.

Arup accepts no responsibility, and denies any liability whatsoever, to parties other than Client who may obtain access to the Report or the Information for any injury, loss or damage suffered by such parties arising from their use of, reliance upon, or decisions or actions based on the Report or any of the Information ("improper use of the Report"), except to the extent those parties have obtained the prior written consent of Arup to use and rely upon the Report and the Information. Any injury, loss or damages arising from improper use of the Report shall be borne by the party making such use.

This Statement of Qualifications and Limitations is attached to and forms part of the Report and any use of the Report is subject to the terms hereof.

1. Introduction

Arup has been retained to continue supporting the development of improvements at the Baldwin Airport as a site alteration permit is sought with the Town of Georgina. Arup is providing Civil Engineering and Aviation Planning services to prepare this Preliminary Stormwater Management Brief (the "Report") in addition to grading and erosion and sediment control plan drawings (the "Drawings"). The preliminary design outlined in the Report and Drawings are as of November 1st, 2024.

1.1 **Project Context**

The existing Baldwin aerodrome site, CPB9, is approximately 36 ha and is located 0.5 km east of Baldwin, Ontario, in the Town of Georgina (the "Town"). The site is bordered by Old Homestead Rd to the north, Highway 48 to the west and Smith Blvd to the south.

Proposed improvements at the site for the Baldwin aerodrome that are considered in this Report include:

- Raising the aerodrome by approximately 4.5m to elevate the aviation surfaces from the surrounding wetlands and to better comply with clearance requirements further to Transport Canada TP312 (5th ED).
- Providing aircraft operations as non-instrument, aircraft group number II.
- Providing one (1) runway with designation 01-19.
- Providing one (1) associated parallel taxiway on the east side of the runway.
- Providing a ramp area and space for future buildings such as hangars.
- Providing an access road to the ramp area.

1.2 Purpose

The purpose of this report is to describe the stormwater management methodology and conceptual drainage design. This report outlines the standards and regulations that were considered in the conceptual design of the stormwater management systems, the data used, and the assumptions made.

2. Standards, regulations and guidelines

The primary references for the stormwater management conceptual design are the following:

- Lake Simcoe Region Conservation Authority (LSRCA) Technical Guidelines for Stormwater Management Submissions (April 2022).
- Town of Georgina Department of Operations & Engineering Development Design Criteria (2013).
- City of Barrie Storm Drainage and Stormwater Management Policies and Design Guidelines (May 2022).
- Toronto and Region Conservation Authority Low Impact Development Stormwater Management and Planning Design Guide (2010).
- Erosion and Sediment Control Guide for Urban Construction, TRCA (2019).

The primary references for the grading design are as follows:

Page 6

- For the aviation surfaces, Transport Canada TP 312 5th Edition and ICAO Aerodrome Design Manual 5th Edition, Part 2 Taxiways, Aprons and Holding Bays.
- For roadways, Town of Georgina Design Criteria, Ministry of Transportation Ontario (MTO) Supplement to the Transportation Association of Canada Geometric Design Guide for Canadian Roadways, Transportation Association of Canada (TAC) Geometric Design Guide for Canadian Roadways.

3. Data available

The available data that was used to support the stormwater management conceptual design are listed below:

- Topographic survey provided by Geoverra on June 29, 2020. Surface includes the extent of existing gravel surfaces, existing structures and vegetation areas.
 - Horizontal coordinate system is NAD 1983 UTM Zone 17N
 - Vertical coordinate system is CGVD-1928:1978
- Rainfall data taken from Barrie WPCC Station #6110557 per the Town of Georgina Development Design Criteria.
- Pre-development land cover types included within the extents of our site are determined using the provided topographic survey data and aerial imagery (Source: Google Earth, Esri).
- Post-development land cover determined using proposed Baldwin airport layout.
- Copy of the LSRCA hydraulic model (HEC-2) of Black River received on June 26, 2024.
- Copy of the LSRCA hydrologic model (VO2) of Black River watershed and supporting model build report received on June 26, 2024.

4. Stormwater management approach

The proposed stormwater management approach is focused on the management of the water quantity and treatment of water quality. Where feasible, the design seeks to minimize the disturbed area and limit the impact to nearby wetland areas. The goal is to capture and treat runoff before it reaches Black River. The Low-Impact Design (LID) elements proposed includes open swales and a stormwater basin, which are preferred over the use of enclosed pipes and storage tanks.

The treatment train approach is applied by combining practices to manage and treat stormwater runoff. The design looks to minimize impacts through native revegetation to the extent practical, capture runoff in swales, and collect and detain stormwater in a basin. An oil-grit separator is also proposed to provide water quality benefits downstream of the underground storage tank prior to the Black River outfall. Stormwater runoff from the site discharges to Black River under pre- and post-development conditions.

Given the planned grading and infrastructure improvements, erosion and sediment control during and after construction are incorporated into the design.

4.1 Water quantity

A new stormwater management system is designed to accommodate any increase in impervious cover, in accordance with the LSRCA regulations. Any increase in stormwater runoff from the pre-development to post-development condition will need to be detained. The stormwater basins will be sized to manage the post-development runoff volume under a 100-year storm event. Water leaving the stormwater management facilities will ultimately discharge to Black River. Table 1 lists water quantity targets for the project.

Table 1: Water quantity targets

Water Quantity

- Post-development peak flow rates are not to exceed the corresponding pre-development peak flow rates
- Minor system to be designed based on the 1:5-year storm event and the Major System to be designed based on the 1:100-year storm event
- Maintain existing drainage patterns where feasible
- Controlled release of discharge of stormwater runoff into Black River

4.2 Water quality

The goal is to use a combination of natural site features, vegetated open swales, and reduction of impervious cover to meet runoff reduction requirements. Table 2 lists water quality targets for the project.

Table 2: Water quality targets

Water Quality

- Capture/treat the post-development direct runoff volume from 25mm of rainfall on all new / reconstructed impervious surfaces
- Treat the volume of water calculated above to achieve a minimum of 80% removal of total suspended solids and a minimum of 80% removal of annual Total Phosphorus load
- End of pipe stormwater management facilities to be designed to consider minimizing thermal impacts

4.3 Flood analysis

The LSRCA recommends a flood analysis using the most recent hydraulic model of Black River to demonstrate the proposed airport improvements have no negative impacts to flooding (water surface elevations), erosion (channel and overbank velocities), and conveyance of spills. Arup's initial review of the LSRCA's HEC-RAS model indicated no significant change in water surface elevations in Black River as a result of the proposed design. Therefore, it was determined that a Cut/Fill Compensation Analysis for flood storage was not necessary at this stage of design. Refer to Appendix A for a Technical Note summarizing Arup's review of the existing LSRCA hydraulic model.

4.4 Erosion and sediment control

The proposed work involves an Erosion and Sediment Control (ESC) Plan, prepared for review and approval by the municipality prior to the start of site works. The plan is informed by the LSRCA *Technical Guidelines for Stormwater Management Submissions*, 2022 and the TRCA *Erosion and Sediment Control Guide for Urban Construction, 2019*. Furthermore, the plan will address implementation, phasing, inspection, monitoring, and decommissioning using best management practices.

To minimize local and downstream impacts from erosion, wind-blown dust and sedimentation, a staged approach is proposed to allow the plan to evolve with changes on-site from clearing activities through to re-stabilization. As part of this staged plan, the following best practice measures are recommended for implementation:

- Temporary sediment control fencing should be erected, prior to the commencement of site works, around the perimeter of all grading activities, including double silt fences adjacent to the limits of disturbance;
- Temporary sediment fabric and stone filters should be installed on inlet devices to remain until surface cover has been re-established;
- Temporary rock flow check dams should be installed within drainage cut-off swales;
- All site drainage to be directed to the sediment basins and other check dams via sheet drainage, berms, or swales (as necessary) to facilitate the completion of grading works. The contractor shall construct any additional swales or berms that may be necessary to direct runoff in a controlled manner of suitable quality;
- Temporary drainage cut-off swales to capture flows from exposed earth surfaces and direct them to best management practices for treatment prior to discharge;
- Temporary construction access mud mats to be installed at the construction access, to reduce the amount of material (mud-tracking) that may be transported off site;
- Temporary erosion and sediment control basins are to be constructed, complete with a Hickenbottom outlet control structure and emergency overflow weir. The basins' purpose is to detain runoff long enough to allow most suspended soil particles to settle out of captured runoff;
- Temporary treatment trains are to be provided to treat groundwater discharges from construction dewatering activities, prior to discharge to the Town's sewer network. The treatment train will be designed following completion of the Hydrogeological Assessment, and may include a combination of an Active Treatment System, Dewatering Tanks, and Dewatering Bags as required to meet the appropriate water quality standards;
- Temporary turbidity curtains to be installed within adjacent waterways if applicable to provide a physical barrier isolating the work zone and limiting the movement of suspended sediments released during construction;
- Temporary measures, as described previously on an as required basis, to protect surface and below ground low impact development measures proposed throughout the subject lands, until stabilization is achieved;
- Excess earth and topsoil to be stockpiled away from the water's edge and/or removed from site. Stockpiles shall be seeded or covered with an erosion control blanket if left for periods of greater than 30 days;
- All disturbed areas not under immediate construction for 30 days, or not intended for building activities within a 3-month time period, should be stabilized with seeding;
- Monitor construction during drier months for wind-borne transport of sediment. At the direction of the Engineer, the contractor may be directed to water down exposed earth areas with an aqueous dust suppressing solution;
- Undertake a monitoring program to check all ESC measures as required are in place, not damaged, and generally functioning as intended at the following intervals:
 - \circ On a weekly basis during active construction,
 - Before and after signification rainfall events;
 - An event during which ≥ 15 mm have been received within 24 hours; or,
 - An event with an intensity of \geq 5 mm/hr and during which 10 mm have been received.

- After significant snowmelt events,
- After any extreme weather (e.g. wind storms) which could result in damage to ESC measures,
- Daily during extended rainfall or snowmelt periods,
- Monthly during inactive periods (>30 days),
- During or immediately following any spill event,
- Before construction is shut down for the winter to ensure the site is ready for freezing conditions and thaws; and,
- At the end of construction to confirm the site has achieved at least 80% stabilization and that permanent vegetation areas are well-established and effectively preventing erosion.
- Require the contractor to prepare a Spill Response and Control Plan, which at minimum outlines the following:
 - Description of actions to be taken during a spill, including procedures for responding, reporting, containment and clean up;
 - Description of spills control equipment and materials that should be available on site, including the quantities thereof and locations they are stored in; and,
 - A list of relevant emergency contact numbers, including both project and external contacts.
- Phased removal of temporary sediment basins or control devices during commissioning phase of the development to coincide with upstream stabilization (established vegetation) of the catchment;
- The contractor will be responsible for clean-up, proper off-site disposal of ESC materials, and restoration of disturbed areas.

Through proper planning, implementation and monitoring of erosion and sediment control measures, off site impacts are expected to be minimized during the construction phase of the project.

Primary soil erosion and sediment control items proposed in the project include:

- Unreinforced woven geotextile silt fence (temporary)
- Stockpile stabilization (temporary)
- Sediment basin
- Stabilized construction entrance
- Erosion Control Blanket and Fiber Rolls for stabilization of steep terrain
- Sodding adjacent to aircraft manoeuvring areas to be held down using biodegradable mesh protection and secured with staples

4.5 Airport design requirements

A preliminary grading design for the runway, taxiway, and apron has been developed based on TP 312 5th Edition requirements and forms the basis of the stormwater management analysis.

Transport Canada has guidance on the hazardous wildlife attractants on or near airports (see Transport Canada Aviation Publications TP 13549 and TP 312). The recommendation is for stormwater management systems to be designed and operated so as not to create above-ground standing water. The stormwater detention ponds on site

are designed, engineered, constructed, and maintained for a maximum 24-hour detention period after the design storm and to remain completely dry between storms.

5. Conceptual stormwater management design

The hydrologic analysis and conceptual design of stormwater management and drainage features are summarized below.

5.1 **Pre-development conditions**

5.1.1 Site description

The existing Baldwin aerodrome site, CPB9, is approximately 36 ha and is located 0.5 km east of Baldwin, Ontario. The site is bordered by Old Homestead Rd to the north, Highway 48 to the west and Smith Blvd to the south. The site is generally sloped towards Black River, which flows along the southeast property line.

There are existing structures and a gravel road on the southern portion of the site. Figure 1 shows the overview of the Baldwin aerodrome under the pre-development conditions.

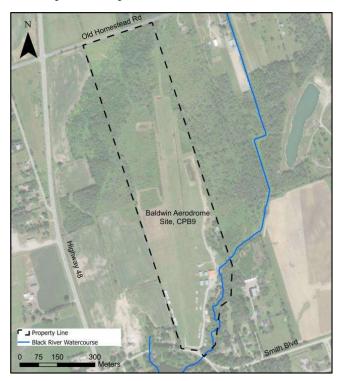


Figure 1: Pre-development site layout

The LSRCA hydraulic model was used to determine the floodplain of Black River. Figure 2 shows the floodplain extent on the southeast portion of the site. Refer to Appendix A for a Technical Note summarizing Arup's review of the existing LSRCA hydraulic and hydrologic models.

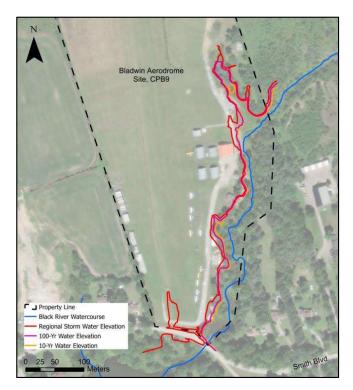


Figure 2: Black River floodplain extent

5.1.2 Hydrology

Based on the available topographical information, the runoff from the Baldwin aerodrome site typically flows overland from northwest to southeast and discharges into Black River. For this project, three drainage catchments have been assumed for the hydrology analysis. The hydrology analysis was undertaken in accordance with the Rational Method. As the design progresses, a runoff software model (e.g. Visual Otthymo) will be used to verify peak discharges.

Based on the available topographical survey data and aerial imagery, the Baldwin aerodrome site catchments were split based on land cover type. Existing vegetated ground cover is assumed to be predominantly lawn (runoff coefficient c, 0.2). Existing homes and roadways are assumed to be impervious cover. Figure 3 depicts identified land cover within the site under the existing conditions. The run-off coefficients for each land cover type were determined per LSRCA Technical Guidelines for Stormwater Management Submissions.

The runoff and peak discharge rates were calculated for all storm events using City of Barrie WPCC Intensity-Duration-Frequency (IDF) curves, as specified by the Town of Georgina Development Design Criteria. The IDF curve parameters for Barrie WPCC Station #6110557 are increased by 15% to account for climate change. The Rational Method was used to undertake required hydrology calculations using a 10-minute timestep. Table 3 summarizes the results for runoff and peak discharge rates under the existing conditions. The hydrology calculations for Baldwin aerodrome site are provided in Appendix B.

Catchment	Area (ha)	Weighted runoff coefficient, C	10-Yr peak discharge (L/s)	100-Yr peak discharge (L/s)
C1	10.40	0.20	123.5	225.1
C2	9.39	0.13	53.4	97.6
C3	1.44	0.25	50.8	91.8

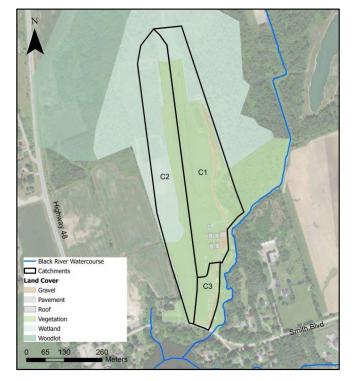


Figure 3: Pre-development land cover

5.2 **Post-development conditions**

5.2.1 Site description

Table 3: Pre-development hydrology

Under the post-development condition, all existing structures located with the site will be demolished. A new paved runway, taxiway and hangar area will be constructed. Access to the site is proposed to be provided via a paved access road from Smith Blvd. The rest of the site is proposed to be vegetated with native grasses. Figure 4 shows the overview of the Baldwin aerodrome under the post-development conditions.

Existing drainage patterns are maintained where possible. The site continues to slope towards Black River. The taxiway and apron area will discharge to Black River via a new gravity outfall. The runway and access road will have two separate outfalls towards the existing roadside swale along Smith Blvd to the south of the site.

The LSRCA hydraulic model cross-sections through the site were updated to determine the impact that the project may have on the floodplain of Black River. The proposed model results indicate that there is no significant impact on the Black River floodplain. Refer to Appendix A for further information.

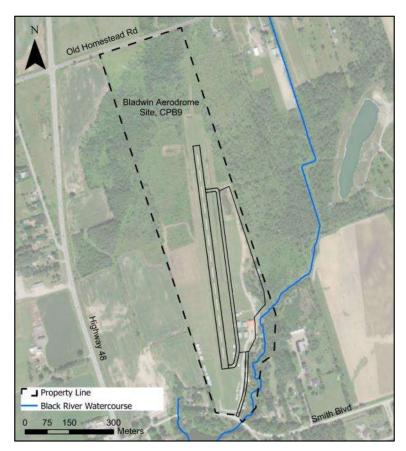


Figure 4: Post-development site layout

5.2.2 Hydrology

Based on the proposed site layout, Baldwin aerodrome site was split on the proposed land cover type. Similar to the pre-development conditions, land cover type was categorized per LSRCA Technical Guidelines for Stormwater Management Submissions. The proposed runway, taxiway, hangar storage and access road were assigned pavement land cover (runoff coefficient c, 0.9), whilst pervious portion of the site is proposed to be lawn (runoff coefficient c, 0.2). Figure 5 depicts assumed land cover within Baldwin aerodrome site under the post-development conditions.

The runoff and peak discharge rates were calculated for all storm events using City of Barrie WPCC Intensity-Duration-Frequency (IDF) curves, as specified by the Town of Georgina Development Design Criteria. The IDF curve parameters for Barrie WPCC Station #6110557 are increased by 10% for the 1:25-year storm, 20% for the 1:50-year storm, and 25% for the 1:100-year storm, per MTO Design Chart 1.07, as suggested in the LSRCA guidelines . The Rational Method was used to undertake required hydrology calculations using a 10-minute timestep. Table 4 summarizes the results for runoff and peak discharge rates under the post-development conditions. The hydrology calculations for Baldwin aerodrome site are provided in Appendix B.

Catchment	Area (ha)	Weighted runoff coefficient, C	10-Yr peak discharge (L/s)	100-Yr peak discharge (L/s)
C1	10.40	0.57	742.6	1344.3
C2	9.39	0.27	144.7	263.9
C3	1.44	0.34	87.8	158.2

Table 4: Post-development hydrology

Baldwin Airport Rev 3 | 1 November 2024 | Arup Canada Inc. Baldwin Airport Improvements Preliminary Stormwater Management Brief

rabie of Estimated onlinge in peak disonal genates					
Catchment	Δ 10-Yr peak discharge (L/s)	Δ 100-Yr peak discharge (L/s)			
C1	+619.1	+1119.2			
C2	+91.3	+166.3			
C3	+37.0	+66.4			

Table 5: Estimated change in peak discharge rates

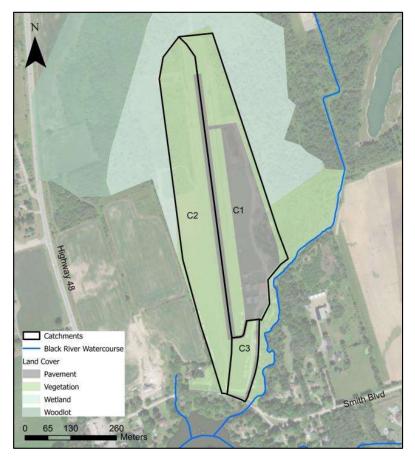


Figure 5: Post-development land cover

5.3 Conceptual design

The site will be divided into 3 catchment areas.

- Catchment C1 includes a portion of the runway, the taxiway and the apron area. Runoff will generally flow from northwest to southeast. A swale is proposed on the east side of the apron to collect runoff from leaving the site. Catchbasins will be used to collect runoff at low points in the swale and conveyed through an underground pipe network towards an underground storage tank. The use of sediment control check dams, installed every 100 m within the swales, will help to lodge sediment and prevent it from entering the catchbasins. The flow is proposed to pass through an Oil-Grit Separator (OGS) before being discharged into Black River.
- Catchment C2 includes the western portion of the runway and the embankment area. A swale is proposed on the west side of the embankment to collect runoff from leaving the site. The swale will convey the runoff towards a dry detention basin, which is used for water quality and quantity control.

Baldwin Airport Rev 3 | 1 November 2024 | Arup Canada Inc. Baldwin Airport Improvements Preliminary Stormwater Management Brief

Page 15

Stormwater will be discharged into the roadside ditch along Smith Blvd, thus maintaining existing flow paths.

• Catchment C3 includes the site access road (driveway). A swale is proposed on the west side of the road to collect and store stormwater runoff. Stormwater will be discharged into the roadside ditch along Smith Blvd, thus maintaining existing flow paths.

Finally, any external runoff that would previously flow through the site will be conveyed via swales along the property lines to maintain existing flow patterns. No flow control will be provided for these property line swales.

5.3.1 Swales

The proposed swales are designed as grassed swales and sized to convey a 100-year 24-hour rainfall event. It should be noted that the swales were sized based on the peak discharge rates estimated using the Rational Method.

All swales are proposed to be trapezoidal. Depth of the swales range from 0.5m to 1.0m depending on contributing flow. The minimum longitudinal slope was set to 0.10%. The minimum swales slope is due to constraints for the runway, taxiway and runway end safety area.

Riprap erosion protection is proposed at bends in the swales where the flow changes direction. Swale inlet and outlet riprap protection are also included in the design.

See drainage plan in Appendix C.

5.3.2 Stormwater basin

The proposed stormwater basin is designed in accordance with LSRCA's Technical Guidelines for Stormwater Management Submissions. The water quantity and water quality requirements for the site were compared to determine the required storage capacity of the stormwater basin. The size of the basin is governed by water quantity volume. The basin is designed as a dry detention basin with a storage capacity of approximately 2910.9m³ at the maximum water level. The basin is proposed to have a permanent storage depth of 1m and active storage depth of 1m, resulting in the total depth of 2m. The stormwater basin is proposed to be constructed with 3H:1V side slope. A 3m wide vegetative buffer is proposed to be provided around the edge of the basin. The basin bottom gradually slopes towards the outlet pipe at 0.30%.

In order to comply with the "water quality" requirements, the stormwater basin is proposed to have an outlet structure containing an orifice sized to detain the water quality volume over at least 24-hours. It should be noted that the stormwater basin is also proposed to have a forebay to aid with water quality pre-treatment and sediment settlement.

An outlet control swale is also proposed to allow stormwater to discharge into the existing roadside ditch along Smith Blvd at the allowable release rate.

See Appendix C for details of the proposed stormwater basin.

5.3.3 Underground drainage network

Stormwater collected from the taxiway and apron areas will be conveyed to an underground storage tank via underground pipes. Discharge from the storage tank will be conveyed through a 250mm diameter underground pipe towards the Black River outfall. Ideally, all storm pipes should have minimum 1.7m cover from proposed grade to pipe obvert. Any pipes with reduced cover need to consider insulation and concrete encasement for additional strength.

5.3.4 Underground storage tank

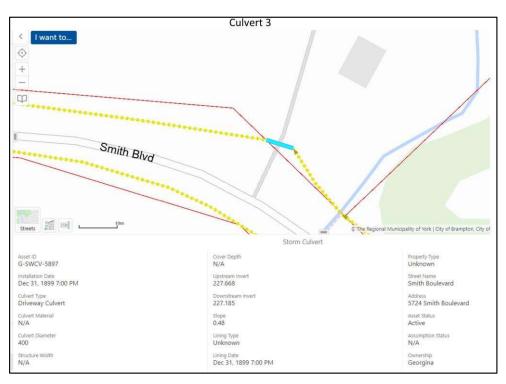
Due to the flatness of the site and limited elevation difference, it is not possible to convey all stormwater runoff to a single stormwater basin. Therefore, in order to comply with "water quantity" requirements for the apron area, an underground storage tank is proposed on the east side of the site. Stormwater runoff will be collected by

Baldwin Airport Rev 3 | 1 November 2024 | Arup Canada Inc.

Page 16

catchbasin structures at low points in the swales and directed towards the storage tank. The storage tank is designed with a storage capacity of approximately 4187m³. The basin is proposed to have an approximate width of 28m, length of 110m and depth of 1.4m.

The storage tank is proposed to have an outlet structure containing an orifice sized to control the discharge to Black River. The proposed outlet structure also includes a weir wall that will allow for emergency overflow out of the storage tank under more severe storm events.


In order to comply with the "water quality" requirements, an Oil-Grit Separator (OGS) is also proposed downstream of the stormwater outlet structure to aid with grit, oil, grease, sediment, and debris separation from stormwater, providing an additional level of water quality treatment for the outgoing flow from storage tank. The unit shall consist of a precast manhole structure, a frame and cover, an inlet pipe, and an outlet pipe. The OGS unit in this case is a polishing step to achieve enhanced level quality control, which is why it is positioned downstream. The proposed storage tank system may be provided with a sediment trap/forebay as pre-treatment device to limit ingress of sediment into storage facility (ex. ADS StormTech Isolator Row or equivalent).

5.3.5 Outfall to Black River

A stabilized riprap outfall is proposed for at the point of water discharge to Black River. The proposed outfall includes a concrete headwall and riprap apron per City of Barrie and Ontario Provincial Standards Drawings (OPSD). From the LSRCA Hydraulic Model the 100-year water level is assumed at an elevation of 228.2m. The proposed outlet is set 0.5m higher than the river's 100-year water level (el. 228.7m) to mitigate the risk backflow as well as minimizing the erosion by accommodating a riprap strip. See Appendix C for details of the proposed outfall to Black River.

5.3.6 Culvert under driveway

In existing conditions, there is a 400mm diameter culvert under the driveway (Asset ID: G-SWCV-5897). The culvert has an upstream invert elevation of 227.668m and a downstream invert elevation of 227.185m (per culvert details provided in the letter response from the Town of Georgina Development Services Department dated October 10, 2023). In the proposed conditions, the culvert is to be replaced in kind to maintain the existing outfall to Black River.

Attachment 4 - Stormwater Management Report

Figure 6: Existing culvert under driveway

6. Conclusions

Arup has undertaken the following actions to develop the stormwater management methodology and conceptual drainage design described in this Report:

- Reviewed the LSRCA hydraulic model of the Black River and validated it for use. Determined the extent of the existing floodplain limits within the site boundaries.
- Updated the LSRCA hydraulic model cross sections to reflect the proposed grading plan. Reviewed the impacts from the proposed grading plan on the existing floodplain. The proposed model results indicated that there is no significant impact on the Black River floodplain. Therefore, it was determined that a cut/fill compensation analysis for flood storage was not necessary at this stage of design.
- Revised the Grading Plan to address comments received from the Town.
- Conducted a hydrologic analysis of the pre and post development conditions at the site. This data was used to prepare a preliminary design for permanent drainage infrastructure and stormwater management facilities to meet quantity and quality control criteria.
- Developed an Erosion and Sediment Control plan for the site summarizing the erosion control measures that should be in place post-construction particularly to allow time for any of the surface materials such as vegetation to establish.

Closure

The work and engineering analysis presented in this Report are based on Arup's current understanding of the project requirements. This Report is subject to the Statement of Qualifications and Limitations presented at the beginning of this Report.

Arup should be retained for a general review of the any developments on the project to verify that this Report, if considered in any of the developments, has been properly interpreted and implemented. Any design changes that impact the analyses in this Report should be assessed by Arup, or alternatively an approved Qualified Person, to determine whether the conclusions of this Report require review and modification.

The hydrology analysis and preliminary stormwater management strategy provided in this Report are based on the available data at the time of design development. The preliminary stormwater management strategy provided respected the aims of the local guidelines of the Town of Georgina and LSRCA as a starting point, as set out in section 2 above. Note that changes in existing condition assumptions may impact the stormwater management strategy, in which case Arup should be provided with the opportunity to review the design strategy.

We trust this information satisfies your requirements at this time. Should you have any questions on the contents of this Report, please do not hesitate to contact the signatories.

Prepared by

Michael Tran

Bailey Sadowsky

Michael Tran

November 1, 2024

Date

Name

Signature

Checked by

George Long

Joshua Battiston, P.Eng.

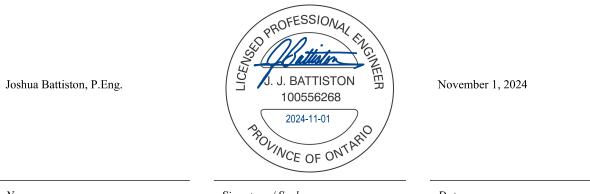
Cry Cy Abattiston

November 1, 2024

Name

Signature

Date


Baldwin Airport Rev 3 | 1 November 2024 | Arup Canada Inc. Baldwin Airport Improvements Preliminary Stormwater Management Brief

Page 19

Report No. DS-2025-0018

Attachment 4

Approved by

Name

Signature / Seal

Date

Appendix A - LSRCA model review

A.1 Introduction

This technical memorandum has been produced to summarise the review of the Lake Simcoe Region Conservation Authority (LSRCA) models of the Black River for reaches in proximity to the site.

A.2 Models Received

The LSRCA provided the following data to Arup on June 26, 2024:

Table 6: Data received from LSRCA

File Name	File Format
Greenland Hydrology Model (Nov 2003)	Visual OTTHYMO (VO)
Greenland Hydrology Report (Nov 2004)	PDF
H_TRB_B4 Hydraulic Model	HEC-2
H_TRB_B4 Hydraulic Model Output File (Sep 2006)	.OUT

A.3 Hydrologic Model

Greenland Hydrology Model was provided as a Visual OTTHYMO (VO) file, along with the accompanying Greenland Hydrology Report. A screenshot of the model is show in Figure 7 below.

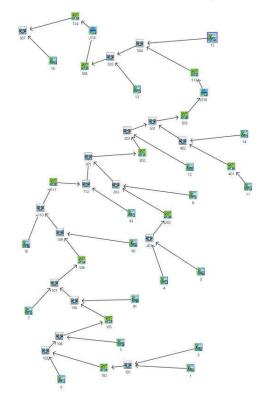
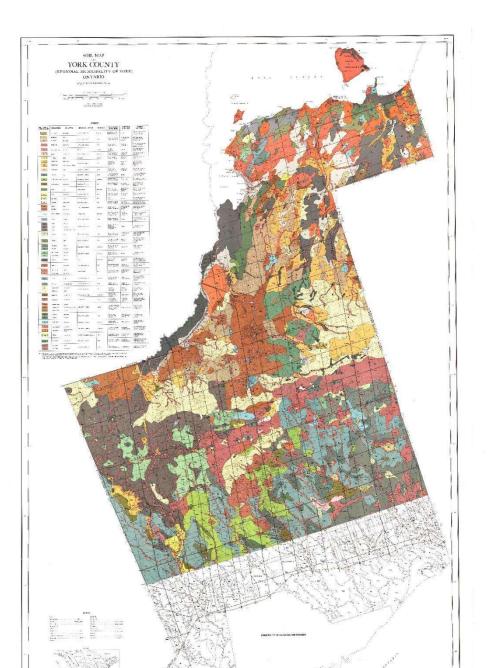


Figure 7: Greenland V06 Hydrology Model

Baldwin Airport Rev 3 | 1 November 2024 | Arup Canada Inc. Baldwin Airport Improvements Preliminary Stormwater Management Brief

Report No. DS-2025-0018

Attachment 4


A.3.1 Greenland Hydrology Model Validation

The Greenland Hydrology Model was provided as a Visual Otthymo 2 (V02) file. Since the current Visual Otthymo 6 (V06) software supersedes the V02 software, the data was imported into V06 for review and analysis. Upon review of the provided Greenland Hydrology Report, Catchment 15 captures the location of the proposed site, as seen in Figure 8.

Figure 8: Existing Catchments used in Greenland Hydrology Model

Utilizing the provided Greenland Hydrology Model, a model validation review was conducted. Input parameters for Catchment 15 were cross-checked against those delineated for the current existing conditions for Baldwin Aerodome project, ensuring consistent results. Catchment areas were validated using LSRCA GIS Open Data catchment files, while hydrographs and flow paths in the model were verified against real-world conditions using Google Maps and topography data to accurately reflect any landscape changes since the completion of the existing model. Land use and soil types were verified using open data provided from the Ministry of Agriculture and Food (see Figure 9). The Greenland Hydrology Model was then rerun using the design storm files and parameters provided, yielding results that are acceptably similar to the values reported in the Hydrology Report. These validation processes confirm the reliability of the model.

A.3.2 Next steps - Proposed Conditions Model

Since the provided Greenland Hydrology Model captures a much greater area as compared to the proposed project site, a new V06 Model should be created to capture a smaller extent around the proposed site where proposed peak flow rates may change due to proposed design. The existing Greenland Hydrology Model will be used to verify that both pre- and post-development runoff values computed are reasonable, as well as serve as a baseline to ensure post-development peak flow rates will not exceed pre-development peak flow rates with the proposed stormwater management strategy.

Figure 9: Ministry of Agriculture and Food landuse and soil type map

Baldwin Airport Rev 3 | 1 November 2024 | Arup Canada Inc. Baldwin Airport Improvements Preliminary Stormwater Management Brief

Page 23

A.4 LSRCA GIS Open Data

Using the GIS Open Data provided online by the LSRCA, it was determined that there are five cross-sections from the hydraulic model that intersect the site. Figure 10 shows the relevant Black River cross-sections. The water elevations for the cross-sections (provided by GIS Open Data) are summarized in Table 7 below.

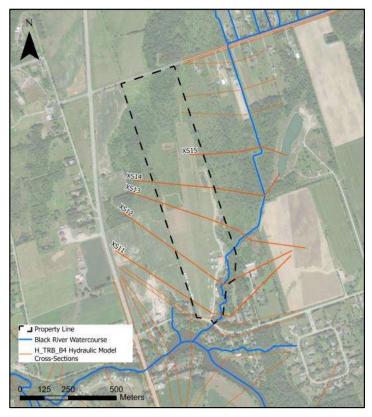


Figure 10: Black River cross-sections

Table 7: Water elevations for Black River cross-sections										
			Water Ele	vation (r						
River Station	2-Year Storm	10-Year	25-Year	50-Y						

	Water Elevation (m)								
River Station	2-Year Storm	10-Year	25-Year	50-Year	100-Year	Regional			
	Event	Storm Event	Storm Event	Storm Event	Storm Event	Storm Event			
15	229.21	229.55	229.71	229.83	229.98	230.17			
14	228.58	228.90	228.94	228.94	228.89	229.20			
13	227.24	227.64	227.87	227.99	228.11	228.71			
12	227.01	227.78	227.93	228.03	228.13	228.71			
11	227.00	227.77	227.93	228.03	228.13	228.70			

A portion of the southeast corner of the site is within the Black River floodplain. Using the water elevation data above, the existing floodplain limits within the site boundary are shown in Figure 11 below.

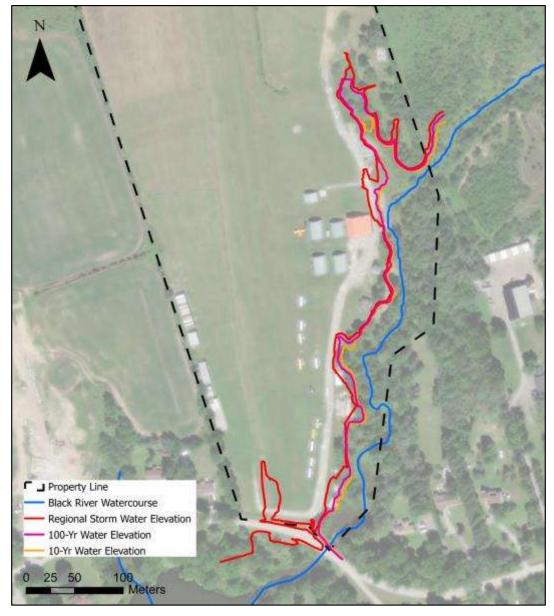


Figure 11: Floodplain limits within site boundary

Baldwin Airport Rev 3 | 1 November 2024 | Arup Canada Inc.

A.5 H_TRB_B4 hydraulic model

A.5.1 Existing conditions

The *H_TRB_B4* hydraulic model was provided as a HEC-2 file. Since the current HEC-RAS software supersedes the HEC-2 river hydraulics package, the data was imported into HEC-RAS for review and analysis. A screenshot of the imported data is shown in Figure 12 below.

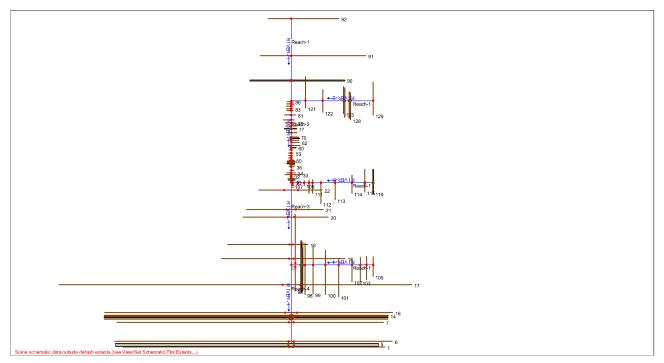


Figure 12: HEC-RAS geometric data view of H_TRB_B4

When the data was imported into HEC-RAS, the cross-sections were automatically renamed. The new names of the relevant cross-sections were determined by reviewing the descriptions included in the model.

The imported HEC-RAS model was also missing key bridge/culvert information which prevented the model from running. Since this information was not available, all bridge and culverts were removed from the hydraulic model. Water elevation checks on the downstream sections immediately following the bridges and culverts were compared between the GIS Open Data and the model run without bridges and culverts. The results showed minimal variations with no significant impact to water elevations. Additionally, a check for overtopping in existing conditions at the culvert located southwest of the site was found not to be overtopped. The roadway elevation above the culvert is 228.67m and the water elevation at the culvert is 228.41m upstream and 228.53m downstream, therefore all bridges and culverts were removed from the model. The results from the imported HEC-RAS model (without bridge/culverts) vary slightly from the water elevation data provided by the GIS Open Data.summarizes the difference in water elevation for each design storm.

			Water Elevation (m)							
River Station		2-Year Storm Event	10-Year Storm Event	25-Year Storm Event	50-Year Storm Event	100-Year Storm Event	Regional Storm Event			
GIS Open Data	15	229.21	229.55	229.71	229.83	229.98	230.17			
Imported HEC-RAS model	15	229.21	229.55	229.74	229.88	230.05	230.19			
Difference	1	0.00	0.00	0.03	0.05	0.07	0.02			

Table 8: Difference in Water Elevations at Section 15

Table 9: Difference in Water Elevations at Section 14

			Water Elevation (m)							
River Station		2-Year Storm Event	10-Year Storm Event	25-Year Storm Event	50-Year Storm Event	100-Year Storm Event	Regional Storm Event			
GIS Open Data	14	228.58	228.90	228.94	228.94	228.89	229.20			
Imported HEC-RAS model	14	228.58	228.90	228.90	228.87	228.84	229.19			
Difference		0.00	0.00	0.04	0.07	0.05	0.01			

Table 10: Difference in Water Elevations at Section 13

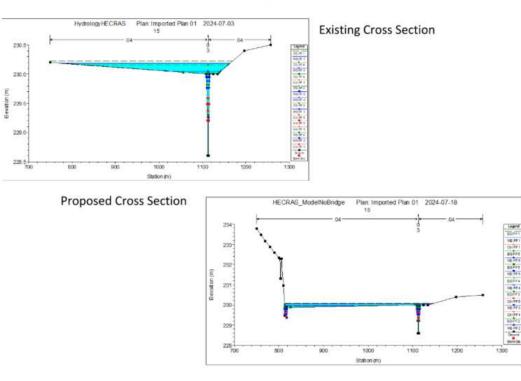
River Station			Water Elevation (m)							
		2-Year Storm Event	10-Year Storm Event	25-Year Storm Event	50-Year Storm Event	100-Year Storm Event	Regional Storm Event			
GIS Open Data	13	227.24	227.64	227.87	227.99	228.11	228.71			
Imported HEC-RAS model	13	227.24	227.67	227.93	228.06	228.16	228.72			
Difference		0.00	0.03	0.06	0.07	0.05	0.01			

		· · · · · · · · · · · · · · · · · · ·								
			Water Elevation (m)							
River Station		2-Year Storm Event	10-Year Storm Event	25-Year Storm Event	50-Year Storm Event	100-Year Storm Event	Regional Storm Event			
GIS Open Data	12	227.01	227.78	227.93	228.03	228.13	228.71			
Imported HEC-RAS model	12	227.01	227.79	227.97	228.08	228.17	228.72			
Difference		0.00	0.01	0.04	0.05	0.04	0.01			

Table 11: Difference in Water Elevations at Section 12

Table 12: Difference in Water Elevations at Section 11

River Station			Water Elevation (m)							
		2-Year Storm Event	10-Year Storm Event	25-Year Storm Event	50-Year Storm Event	100-Year Storm Event	Regional Storm Event			
GIS Open Data	11	227.00	227.77	227.93	228.03	228.13	228.70			
Imported HEC-RAS model	11	227.00	227.79	227.97	228.07	228.17	228.72			
Difference		0.01	0.02	0.04	0.04	0.04	0.02			


A.5.2 Proposed conditions

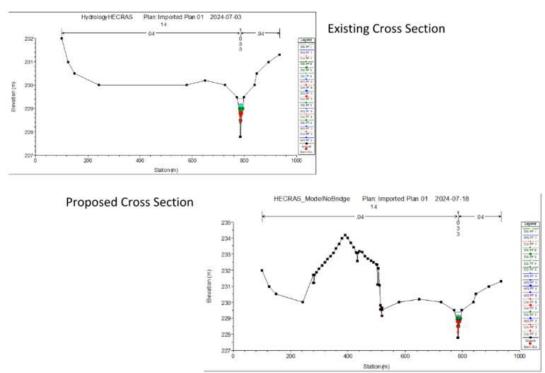
In the proposed condition, the Baldwin Airport runway, taxiway, and apron area are being raised. Therefore, the relevant cross-sections in the imported HEC-RAS model were updated using the proposed surface to determine the potential impact on the Black River floodplain. Figure 13 to Figure 17 show the existing condition and proposed condition cross-sections. The proposed condition water elevations are provided in Table 13 below.

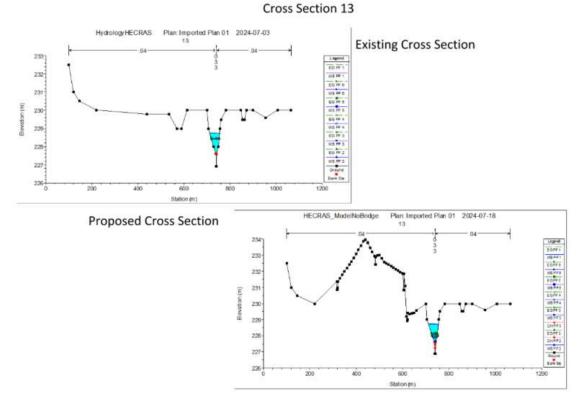
Table 13: Proposed Condition Water Elevation Model Results

	Water Elevation (m)								
River Station	2-Year Storm Event	10-Year Storm Event	25-Year Storm Event	50-Year Storm Event	100-Year Storm Event	Regional Storm Event			
15	229.21	229.54	229.69	229.81	229.94	230.06			
14	228.58	228.90	228.90	228.88	228.84	229.2			
13	227.24	227.66	227.92	228.06	228.16	228.72			
12	227.01	227.79	227.97	228.08	228.17	228.72			
11	227.00	227.79	227.97	228.07	228.17	228.72			

Baldwin Airport Rev 3 | 1 November 2024 | Arup Canada Inc. Baldwin Airport Improvements Preliminary Stormwater Management Brief

Cross Section 15




Figure 14: Changes to Cross Section 14

Baldwin Airport Rev 3 | 1 November 2024 | Arup Canada Inc. Baldwin Airport Improvements Preliminary Stormwater Management Brief

Page 29

Report No. DS-2025-0018

Attachment 4

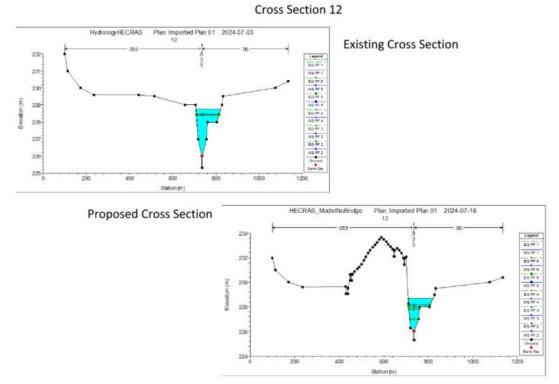


Figure 16: Changes to Cross Section 12

Baldwin Airport Rev 3 | 1 November 2024 | Arup Canada Inc. Baldwin Airport Improvements Preliminary Stormwater Management Brief

Report No. DS-2025-0018

Attachment 4

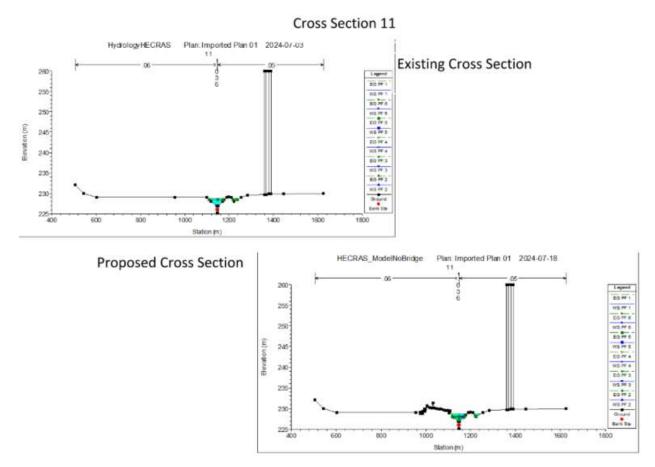


Figure 17: Changes to Cross Section 11

A.5.3 Results analysis

Table 14 to Table 18 summarizes the difference in water elevation for each design storm under the existing and proposed conditions.

Note that the existing condition water elevations from the imported HEC-RAS model were used to determine the relative impact of the proposed design on the Black River floodplain.

	Water Elevation (m)							
	2-Year Storm Event	10-Year Storm Event	25-Year Storm Event	50-Year Storm Event	100-Year Storm Event	Regional Storm Event		
Existing condition	229.21	229.55	229.74	229.88	230.05	230.19		
Proposed condition	229.21	229.54	229.69	229.81	229.94	230.06		
Difference	0.00	-0.01	-0.05	-0.07	-0.11	-0.13		

Table 14: Cross Section 15 Existing vs Proposed Water Elevations

Baldwin Airport Rev 3 | 1 November 2024 | Arup Canada Inc. Baldwin Airport Improvements Preliminary Stormwater Management Brief

		Water Elevation (m)							
	2-Year Storm Event	10-Year Storm Event	25-Year Storm Event	50-Year Storm Event	100-Year Storm Event	Regional Storm Event			
Existing condition	228.58	228.90	228.90	228.87	228.84	229.19			
Proposed condition	228.58	228.90	228.90	228.88	228.84	229.20			
Difference	0.00	0.00	0.00	0.01	0.00	+0.01			

Table 15: Cross Section 14 Existing vs Proposed Water Elevations

Table 16: Cross Section 13 Existing vs Proposed Water Elevations

	Water Elevation (m)							
	2-Year Storm Event	10-Year Storm Event	25-Year Storm Event	50-Year Storm Event	100-Year Storm Event	Regional Storm Event		
Existing condition	227.24	227.67	227.93	228.06	228.16	228.72		
Proposed condition	227.24	227.66	227.92	228.06	228.16	228.72		
Difference	0.00	-0.01	-0.01	0.00	0.00	0.00		

Table 17: Cross Section 12 Existing vs Proposed Water Elevations

	Water Elevation (m)							
	2-Year Storm Event	10-Year Storm Event	25-Year Storm Event	50-Year Storm Event	100-Year Storm Event	Regional Storm Event		
Existing condition	227.01	227.79	227.97	228.08	228.17	228.72		
Proposed condition	227.01	227.79	227.97	228.08	228.17	228.72		
Difference	0.00	0.00	0.00	0.00	0.00	0.00		

	Water Elevation (m)					
	2-Year Storm Event	10-Year Storm Event	25-Year Storm Event	50-Year Storm Event	100-Year Storm Event	Regional Storm Event
Existing condition	227.00	227.79	227.97	228.07	228.17	228.72
Proposed condition	227.00	227.79	227.97	228.07	228.17	228.72
Difference	0.00	0.00	0.00	0.00	0.00	0.00

Table 18: Cross Section 11 Existing vs Proposed Water Elevations

There appears to be no significant change between the proposed condition and existing condition water elevations. Generally, in the proposed conditions, the water elevations decrease slightly, except for Cross Section 14 where the water elevation increases by 0.01m during the 50-year and Regional Storm event. Also, the change in water elevation only occurs in cross sections upstream of the proposed site. There are no changes in water elevation for cross sections downstream of the site.

The updated *H_TRB_B4* hydraulic model and extracted water elevation data are used to inform the preliminary site layout and stormwater management design.

Appendix B - Calculations

Baldwin Airport Rev 3 | 1 November 2024 | Arup Canada Inc.

Report No. DS-2025-0018

Attachment 4

ARUP

JOB TITLE	Baldwin Aerodome
JOB NUMBER	287943-00
MADE BY	MT
CHECKED BY	BS
DATE	10-10-24
Description of spreadsheet	Modified Rational Method for stormwater management facility sizing
Member/Location	Toronto
Report Reference	
Filename	\\global.arup.com\americas\Jobs\TOR\280000\287943-00\3 Design\3-06 Calcs\SWM Calcs\[Release Rates and Storage - 3

CONTENTS OF SPREADSHEET

Sheet	Description
1	SWM Drainage Area Calculations
2	SWM Drainage Calculations Summary
3	Weighted C and Tc Calculator
4	C1 - SWM Allowable Release Rate and Required Storage
5	C1 - Tank Outlet structure
6	C1 - ESC Pond Outlet structure
7	C1a - SWM Allowable Release Rate and Required Storage
8	C1b - SWM Allowable Release Rate and Required Storage
9	C2 - SWM Allowable Release Rate and Required Storage
10	C2 - Outlet structure
11	C3 - SWM Allowable Release Rate and Required Storage
12	C3 - Outlet structure

AUTHORISATION OF LATEST VERSION

Type and method of check

Signatures & dates:

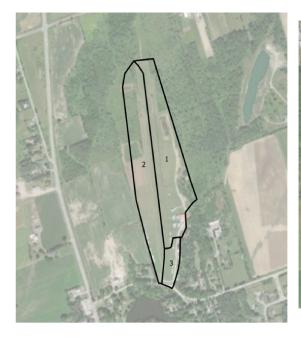
Made by MT

Checked BS

REVISIONS Current Revision 1

Rev.	Date	Made by	Checked	Description
1	08-01-2024	MT	BS	
2	10-10-2024	MT	BS	

		Job No.	Shee	st		Rev.
AR	UP	287943-00	1			1
1 11 1		Member/Location	Toronto			
Job Title	Baldwin Aerodome	Drg. Ref.				
Calculation	SWM Drainage Area Calculations	Made by MT	Date	10-10-24	Chd.	BS


kisting Controlled/Unncontrolled Area						
Catchment ID	Total Area (ha)	Impervious Area (ha)	Semi_imperv (ha)	Wetlands (ha)	Woodlot (ha)	Pervious Area (ha)
C1	10.40	0.15	0.41	1.81	0	8.02
C2	9.39	0.11	0.01	5.15	0	4.12
C3	1.44	0.04	0.15	0	0	1.25
C1a	3.086	0.00	0.00	0.00	0.00	3.09
C1b	7.31	0.15	0.41	1.81	0.00	4.94


Proposed Controlled/Unncontrolled Area						
Controlled/ Uncontrolled	Total Area (ha)	Impervious Area (ha)	Semi_imperv (ha)	Wetlands (ha)	Woodlot (ha)	Pervious Area (ha)
C1	10.40	5.55	0	0	0	4.85
C2	9.39	0.88	0	0	0	8.51
C3	1.44	0.29	0	0	0	1.15
C1a	3.086	1.05	0.00	0.00	0.00	2.03
C1b	7.31	4.50	0.00	0.00	0.00	2.81
		•				

volume required to treat 25mm runoff (Existing)	
Total Impervious Area (whole Site)	0.68 ha
Target Volume Control Required	169.75 m3
Flow Area, A (m ²)	
Wetted perimeter, Wp (m)	
Hydraulic Radius, Rh (m)	5.55 ha
Full flow capacity, Qcapacity, m3/s	1387.75 m3
volume required to treat 25mm runoff (Proposed Catchment 2) Total Impervious Area (whole Site) Target Volume Control Required	0.88 ha 220.25 m3
volume required to treat 25mm runoff (Proposed Catchment 3)	
Total Impervious Area (whole Site)	0.29 ha
Target Volume Control Required	72.00 m3

		Job No.		She	et		Rev.		
AF	RIID	287943-0	D	2		1			
1 11		Member/Loca	tion	Toronto					
Job Title	Baldwin Aerodome	Drg. Ref.							
Calculation	SWM Drainage Calculations Summary	Made by	MT	Date	10-10-24	Chd.	BS		

Catchment ID	Water Quantity Volume (m3)	Water Quality Volume (m3)	Storage Volume Required (m3)
C1	3806.26	1387.75	3806.26
C2	1570.34	220.25	1570.34
C3	140.67	72.00	140.67

		Job No.	Job No.									
AR	UP	287943-00	D		3		0					
		Member/Loca	tion	Toronto								
Job Title	Baldwin Aerodome	Drg. Ref.		XXX								
Calculation	Weighted C and Tc Calculator	Made by	M.T.	Date	10-10-2024	Chd.	B.S.					

Existing Cond	illion																		
Catchment ID	Area (ba)								Land Co	ver								Weighted	%Impervio
Catchinent ID	Area (na)	т	ree	Gr	ass	Grave	I Road	Wet	ands	Build	ding	Run	way	Ot	ner	Sh	rub	Runoff 'C'	
		Area (ha)	С	Area (ha)	С	Area (ha)	C	Area (ha)	C	Area (ha)	С	Area (ha)	С	Area (ha)	С	Area (ha)	С		
Ex_C1	10.40	0.00	0.42	8.02	0.2	0.4	0.5	1.8140	0.05	0.00	0.95	0.15	0.9	0.00	0.95	0.00	0.35	0.20	5.39
Ex_C2	9.39	0.00	0.42	4.12	0.2	0.0	0.5	5.1480	0.05	0.00	0.95	0.11	0.9	0.00	0.95	0.00	0.35	0.13	1.27
Ex_C3	1.44	0.00	0.42	1.25	0.2	0.2	0.5	0.0000	0.05	0.00	0.95	0.04	0.9	0.00	0.95	0.00	0.35	0.25	13.54
Ex_C1a	3.086	0.00	0.42	3.09	0.2	0.0	0.5	0.0000	0.05	0.00	0.95	0.00	0.9	0.00	0.95	0.00	0.35	0.20	0.00
Ex_C1b	7.31	0.00	0.42	4.94	0.2	0.4	0.5	1.8140	0.05	0.00	0.95	0.15	0.9	0.00	0.95	0.00	0.35	0.19	7.66

Proposed Cor	dition																	
									Land Cov									Weighted
Catchment ID	Area (ha)	т	ree	Gra	ass	Gravel	Road	Wetl	Wetlands		Building		Runway		ner	Shrub		Runoff 'C'
		Area (ha)	С	Area (ha)	С	Area (ha)	С	Area (ha)	С	Area (ha)	С	Area (ha)	С	Area (ha)	С	Area (ha)	С	Runon C
Pr_C1	10.40	0.00	0.42	4.85	0.2	0.00	0.5	0.0000	0.05	0.00	0.95	5.55	0.9	0.00	0.95	0.00	0.35	0.57
Pr_C2	9.39	0.00	0.42	8.51	0.2	0.00	0.5	0.0000	0.05	0.00	0.95	0.88	0.9	0.00	0.95	0.00	0.35	0.27
Pr_C3	1.44	0.00	0.42	1.15	0.2	0.00	0.5	0.0000	0.05	0.00	0.95	0.29	0.9	0.00	0.95	0.00	0.35	0.34
Pr_C1a	3.086	0.00	0.42	2.03	0.2	0.00	0.5	0.0000	0.05	0.00	0.95	1.05	0.9	0.00	0.95	0.00	0.35	0.44
Pr_C1b	7.31	0.00	0.42	2.81	0.2	0.00	0.5	0.0000	0.05	0.00	0.95	4.50	0.9	0.00	0.95	0.00	0.35	0.63

Time of Concentration Calculator

Existing Condit	ion													
	Input			Catchme			C Time of Concen			ion [min]				
Catchment ID	Area (ha)	(85)	Catchment Min El (m)(10)	nt Flow Length (m)	Avg. Slope (%)	Impervio usness (%)	5 Yr	25 Yr	50 Yr	100 Yr	Airport Method (C<0.4)	Bransby- Williams Method (C>0.4)	Selected Tc	тр
Ex_C1	10.40	228.926				5.39	0.20	0.22	0.24	0.24	144.461	48.64581	144.461	96.30735
Ex_C2	9.39	229.191		972.7889	0.09	1.27	0.13	0.14	0.15	0.16	215.8455	71.07636	215.8455	
Ex_C3	1.44	228.808			0.78	13.54	0.25	0.28	0.30	0.32	45.50283	13.29756	45.50283	30.33522
Ex_C1a	3.09	229.624	228.866	581.793	0.17	0.00	0.20	0.22	0.24	0.25	126.0948	42.04708	126.0948	84.06323
Ex_C1b	7.31	229.015	227.887	752.281	0.20	7.66	0.19	0.21	0.23	0.24	137.7884	48.49418	137.7884	91.85896

Proposed Cond	lition													
	Input			Catchme				C Time of Concentr				ion [min]		
	Area (ha)	(85)	Catchment Min El (m)(10)	nt Flow Length (m)	Avg. Slope (%)	Impervio usness (%)	5 Yr	25 Yr	50 Yr	100 Yr	Airport Method (C<0.4)	Method (C>0.4)	Selected Tc	Тр
Pr_C1	10.40	231.31	230.384		0.15	53.39	0.57	0.63		0.72	91.50975			35.85602
Pr_C2	9.39	230.695	229.335	1018.793	0.18	9.38	0.27	0.29	0.32	0.33	153.4497	65.55655	153.4497	102.2998
Pr_C3	1.44	231.278	228.703	216.6375	1.58	20.00	0.34	0.37	0.41	0.43	31.32592	10.85865	31.32592	20.88394
Pr_C1a	3.09	232.515	232.014	556.486	0.12	34.12	0.44	0.48	0.53	0.55	102.345			28.86914
Pr_C1b	7.31	231.351	230.559	674.61	0.16	61.53	0.63	0.69	0.76	0.79	73.27397	45.66818	45.66818	30.44545

Utilized MTO 85/10 method for watershed slope

53.39 9.38 20.00 34.12 61.53

%Impervio

AR			87943-00	Sheet 4	Rev. 1	—		
	01		mber/Location	Toronto				
	Baldwin Aerodome		g. Ref.					
alculation	C1 - SWM Allowable Release Rate and Required	Storage	ide by M	T Date 10-10-24	Chd. BS			
tunoff Coefficien	<u>its</u>							
npervious Area ervious Area		0.9						
emi Impervious	Area	0.5						
Vetlands Area Voodlots Area		0.05						
re-Development	Conditions			Post-Development Conditions				Development Conditions Comparison
atchment Area	Conditions	10.40	ha	Catchment Area		10.40 h	a	Catchment Area -0.002 ha
npervious Area ervious Area		0.15		Impervious Area Pervious Area		5.55 h 4.85 h		Impervious Area 5.3990 ha 9 Pervious Area -3.179 ha -3
emi Impervious	(Gravel Road)	0.41	ha	Semi Impervious (Gravel Road)		0.00 h	a	
/etlands Area /oodlots Area		1.81		Wetlands Area Woodlots Area		0.00 h 0.00 h		
omposite C Coe	ff.	0.20		Composite C Coeff.		0.57	-	
LLOWABLE PEA								
	t Catchment Area t Time of Concentration (t)	10.40	ha min					
orm Event	t Rainfall Intensity (i = A / (t+B)^C)	2-YR	5-YR	10-YR	25-YR	50-YR	100-YR	
ottom Width, Wb	• (m)	675.586	843.019	976.898	1133.123	1251.473	1383.628	*Values taken from Town of Georgina Development
		4.681 0.78	4.582 0.763	4.745 0.76	4.734 0.756	4.847 0.753	4.905 0.754	Design Criteria and Standards https://www.georgina.ca/sites/default/files/page_as
(mm/hr)		13.7	18.6	21.8	25.8	28.9	31.8	
elease Rates (Q,	, in L/s)							
orm Event a Value		2-YR 1.00	5-YR 1.00	10-YR 1.00	25-YR 1.10	50-YR 1.20	100-YR 1.25	
ational Method	Release Rates (Q = 2.78 CaCiA)	77.3	105.1	123.5	160.8	196.5	225.1	
egulated Allowa esign Allowable	able Release Rates Release Rates	NA 77.3	NA 105.1	NA 123.5	NA 160.8	NA 196.5	NA 225.1	
low Area, A (m ²)								
/etted perimeter, ydraulic Radius,								
	Qcapacity, m3/s	10.10						
	nt Catchment Area nt Runoff Coefficient	10.40 0.57						
	nt Time of Concentration (t)		min					
	nt Rainfall Intensity (i = A / (t+B)^C)							
orm Event mm/hr)		2-YR 28.6	5-YR 38.3	10-YR 44.8	25-YR 52.8	50-YR 58.9	100-YR 64.9	-
equired Storage	Valuma							
elease Flow Vol	ume Calculation Method	Allowable Release	e Rate x Storm	Duration				
nitial Storm Dura ime Step	ation		min min					
torm Event ritical Duration ((min)	2-YR 98	5-YR 104	10-YR 106	25-YR 107	50-YR 109	100-YR 109	-
Incontrolled Pea		473.9	634.4	742.6	963.1	1172.9	1344.3	-
olume (m ³)		1322.7	1784.3	2093.7	2721.2	3321.7	3806.3	1
Immary of Calc	ulations	Storm Duration	Intensity (i)	Peak Flow (Q)	100 Year Peak Fl Runoff Volume	ow Release Flow Volume	Required Storage Volume	7
		(min) 100	(mm/hr) 41.43	(L/s) 858.81	(m³) 5152.86	(m ³) 1350.81	(m ³) 3802.05	
		101	41.14	852.69	5167.29	1364.32	3802.98	
		102 103	40.85 40.56	846.67 840.74	5181.60 5195.80	1377.82 1391.33	3803.78 3804.47	
		104	40.28	834.92	5209.88	1404.84	3805.04	
		105 106	40.00 39.73	829.18 823.54	5223.85 5237.71	1418.35 1431.86	3805.50 3805.85	
		107	39.46	817.98	5251.46	1445.36	3806.09	
		108 109	39.20 38.94	812.52 807.13	5265.10 5278.64	1458.87 1472.38	3806.23 3806.26	МАХ
		110	38.68	801.83	5292.07	1485.89	3806.18	
		111 112	38.43 38.18	796.61 791.46	5305.40 5318.64	1499.40 1512.90	3806.01 3805.73	
		113	37.94	786.40	5331.77	1526.41	3805.36	
		114 115	37.70 37.46	781.41 776.49	5344.81 5357.76	1539.92 1553.43	3804.89 3804.33	
	Storage Calculations					-		
equired Volume		4186.9	m3	Concrete Decast STM tank				
epth /idth		1.4 28	m m					
ength		110	m					
torage Volume		4312	m3					

				Shee	ət		Rev.	
ARUP				5			1	
1 11 1		Member/Location Toronto						
Job Title	Baldwin Aerodome	Drg. Ref.						
Calculation	C1 - Tank Outlet Structure	Made by	MT	Date	10-10-24	Chd.	BS	

		Orifice I	No. 1		gency ow Weir	
	Elevation (m)	Depth Above Orifice Centroid (m)	Orifice No. 1 Flow (m ³ /s)	Depth Above Overflow Weir (m)	Overflow Weir Flow (m ³ /s)	Total Flow (m3/s)
	230.00	0.00	0.000	0.00	0.000	0.000
	230.05	0.00	0.000	0.00	0.000	0.000
	230.10	0.00	0.000	0.00	0.000	0.000
	230.15	0.03	0.022	0.00	0.000	0.022
	230.20	0.08	0.038	0.00	0.000	0.038
	230.25	0.13	0.048	0.00	0.000	0.048
	230.30	0.18	0.057	0.00	0.000	0.057
	230.35	0.23	0.065	0.00	0.000	0.065
	230.40	0.28	0.072	0.00	0.000	0.072
2 Year	230.45	0.33	0.078	0.00	0.000	0.078
	230.50	0.38	0.084	0.00	0.000	0.084
5 year	230.55	0.43	0.089	0.00	0.000	0.089
	230.60	0.48	0.094	0.00	0.000	0.094
10 year	230.65	0.53	0.099	0.00	0.000	0.099
	230.70	0.58	0.104	0.00	0.000	0.104
	230.75	0.63	0.108	0.00	0.000	0.108
	230.80	0.68	0.113	0.00	0.000	0.113
25 year	230.85	0.73	0.117	0.00	0.000	0.117
	230.90	0.78	0.121	0.00	0.000	0.121
	230.95	0.83	0.124	0.00	0.000	0.124
	231.00	0.88	0.128	0.00	0.000	0.128
50 year	231.05	0.93	0.132	0.00	0.000	0.132
	231.10	0.98	0.135	0.00	0.000	0.135
	231.15	1.03	0.139	0.01	0.001	0.140
	231.20	1.08	0.142	0.06	0.024	0.166
100 year	231.25	1.13	0.145	0.11	0.059	0.205
	231.30	1.18	0.148	0.16	0.105	0.253
	231.35	1.23	0.152	0.21	0.158	0.310
Top of Tank	231.40	1.28	0.155	0.26	0.218	0.373

	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year
Storage Volume (m3)	1322.67634	1784.292752	2093.692	2721.233	3321.733	3806.25656
Depth (m)	0.42944037	0.579315829	0.67977	0.883517	1.078485	1.235797585
Release Rate (m3/s)						0.225134636
Tank Volume						
4312	m3					
Tank Depth						
1.4	m					

CONTROL CHAMBER	- ORIFICE CONTROL	OVERFLOW WEIR
Orffice No. 1 - Orffice diameter (m)= 0.250 - Area (m ²) = 0.049086 - Orifice C = 0.63 - Invert (m)= 230.00 - Orifice Centroid (m) = 230.13		Overflow Weir Overflow Weir Q = {C} {L} {H} {3/2} - Length of Weir Crest P (m) 231.14 - Height of Weir Crest 1.2 Discharge Coefficient, C 1.837
Submerged Orifice Equation: Q = CxAx(2gH)^0.5 Where; Q = flow rate (m ³) C = constant A = area of opening(m ²) H = net head on the orifice g = Acceleration due to gravity	$\begin{array}{l} & \text{Orffice Centroid):} \\ Q_{\mu}=1.65([(p^{\mu}(D^{2})4)(2^{*}\cos^{2}[(((D/2)-d)(D(2-d)))))))])))))))))))))))))))))))))))))$	Sharp-Crested Weir S.0 Typical Weir and Orifice Coefficients A sharp-crested rectangular weir is defined as: The flow over a sharp-trested rectangular weir is defined as: So.0 Typical Weir and Orifice Coefficients The flowing table identifies cosmoly used coefficients (for orifice and weir analysis. Q = CLH ³² (36) Typical Weir and Orifice Coefficients Table 1-Typical Yuber for Weir and Orifice Coefficients where: Q - discharge coefficient Orifice 0.43 C - discharge coefficient Orifice The efforth entry of the weir, ft. Time forther weir and the upstream water energy gradient. 1.2 Water energy gradient. 1.3 Time forther weir and the upstream water energy and the upstream water energy and the cosmol your of the start weir and the upstream water energy and the upstream wateream water energy and the upstream water energy an

					neet No.	Re	ev
ARUP				6			1
	mor		Member/Location		Toronto		
Job Title	Baldwin Airport	Drg.					
Calculation	C1 - ESC Pond Outlet Structure	Made by	BS	Da	^{te} 08-01-24	Chd.	

		Orifice I	No. 1		gency ow Weir							
	Elevation	Depth Above Orifice Centroid	Orifice No. 1 Flow	Depth Above Overflow Weir	Overflow Weir Flow	Total Flow						
	Elevation (m)	(m)	(m ³ /s)	(m)	(m ³ /s)	(m3/s)						
	228.00	0.00	0.000	0.00	0.000	0.000						
	228.05	0.00	0.000	0.00	0.000	0.000						
	228.10	0.00	0.000	0.00	0.000	0.000						
	228.15	0.00	0.000	0.00	0.000	0.000						
	228.20	0.00	0.000	0.00	0.000	0.000						
	228.25	0.00	0.000	0.00	0.000	0.000						
	228.30	0.00	0.000	0.00	0.000	0.000						
	228.35	0.00	0.000	0.00	0.000	0.000						
	228.40	0.00	0.000	0.00	0.000	0.000						
	228.45	0.00	0.000	0.00	0.000	0.000						
	228.50	0.00	0.000	0.00	0.000	0.000						
	228.55	0.00	0.000	0.00	0.000	0.000						
	228.60 228.65	0.04	0.007 0.010	0.00	0.000	0.007 0.010						
	228.65	0.09	0.010	0.00	0.000	0.010						
	228.75	0.14	0.015	0.00	0.000	0.015						
	228.80	0.24	0.017	0.00	0.000	0.017						
Year	228.85	0.29	0.018	0.00	0.000	0.018						
	228.90	0.34	0.020	0.00	0.000	0.020						
	228.95	0.39	0.021	0.00	0.000	0.021						
	229.00	0.44	0.023	0.00	0.000	0.023						
	229.05	0.49	0.024	0.00	0.000	0.024						
	229.10	0.54	0.025	0.00	0.000	0.025						
year	229.15	0.59	0.026	0.00	0.000	0.026						
	229.20	0.64	0.027	0.00	0.000	0.027						
0 year	229.25 229.30	0.69	0.028	0.00	0.000	0.028						
0 year	229.30	0.74	0.029	0.00	0.000	0.029						
	229.35	0.79	0.030	0.00	0.000	0.030						
	229.45	0.89	0.032	0.00	0.000	0.032						
	229.50	0.94	0.033	0.00	0.000	0.033						
	229.55	0.99	0.034	0.00	0.000	0.034						
	229.60	1.04	0.035	0.00	0.000	0.035						
	229.65	1.09	0.036	0.00	0.000	0.036						
25 year	229.70	1.14	0.037	0.00	0.000	0.037						
	229.75	1.19	0.037	0.00	0.000	0.037						
	229.80	1.24	0.038	0.04	0.012	0.050						
	229.85	1.29	0.039	0.09	0.041	0.080						
	229.90	1.34	0.040	0.14	0.080	0.120						
	229.95	1.39	0.040	0.19	0.127	0.167						
op of Pond	230.00	1.44	0.041	0.24	0.180	0.221						
	2 Year	5 Year	10 Year			100 Year						
			2093.692	2721.233		3806.25656						
	1322.67634											
epth (m)	1322.67634 0.82051882	1784.292752 1.10688136			2.060628							
epth (m)					2.060628	2.36120134 0.225134636						
epth (m) elease Rate (m3/s) Pond Dimension:	0.82051882 s and Volume	1.10688136			2.060628							
epth (m) elease Rate (m3/s) Pond Dimension: ond Storage Volume	0.82051882 s and Volume 3224	1.10688136 m3			2.060628							
epth (m) elease Rate (m3/s) Pond Dimension: ond Storage Volume	0.82051882 s and Volume 3224	1.10688136			2.060628							
epth (m) elease Rate (m3/s) Pond Dimension: ond Storage Volume ond Depth	0.82051882 s and Volume 3224 2	1.10688136 m3 m			2.060628							
epth (m) elease Rate (m3/s) Pond Dimension: ond Storage Volume ond Depth ottom elev (perm)	0.82051882 s and Volume 3224 2 2 228.01	1.10688136 m3 m			2.060628							
epth (m) elease Rate (m3/s) Pond Dimension: ond Storage Volume ond Depth ottom elev (perm) pp elev (perm)	0.82051882 s and Volume 3224 2	1.10688136 m3 m m m			2.060628							
epth (m) Pond Dimension: ond Storage Volume ond Depth ottom elev (perm) op elev (perm) op elec (active)	0.82051882 s and Volume 228.01 229.01 230.01	1.10688136 m3 m m m m m	1.298816		2.060628							
epth (m) elease Rate (m3/s) Pond Dimension: ond Storage Volume ond Depth ottom elev (perm) op elev (perm) op elec (active) <u>CONTR</u>	0.82051882 s and Volume 3224 2 2 228.01 229.01	1.10688136 m3 m m m m m	1.298816		2.060628		Quarthou	Weir	OVEF	RFLOW WEIR		
epth (m) elease Rate (m3/s) Pond Dimension: ond Storage Volume ond Depth ottom elev (perm) op elev (perm) op elec (active) <u>CONTR</u> <u>Orifice No. 1</u>	0.82051882 s and Volume 3224 228.01 229.01 230.01 OL CHAMBER -	1.10688136 m3 m m m m m	1.298816		2.060628	0.225134636	Overflow 0.9	Weir				Q
epth (m) elease Rate (m3/s) Pond Dimension: ond Storage Volume ond Depth ottom elev (perm) op elev (perm) op elec (active) <u>CONTR</u> <u>Orifice No. 1</u> Orifice diameter (m)=	0.82051882 s and Volume 228.01 229.01 230.01 OL CHAMBER - 0.125	1.10688136 m3 m m m m m	1.298816		2.060628	0.225134636	0.9		Choose 1	.2m MH	1.75	Q
epth (m) Pond Dimension: ond Storage Volume ond Depth ottom elev (perm) op elev (perm) <u>CONTR</u> : <u>CONTR</u> : <u>Orffice dameter (m)=</u> Area (m ²) =	0.82051882 s and Volume 3224 228.01 229.01 230.01 OL CHAMBER - 0.125 0.012271	1.10688136 m3 m m m m m	1.298816		2.060628	0.225134636 - Length of Weir(m - Elevation of Weir	0.9 Crest P (m) 229.76			.2m MH	1.75	Q
pepth (m) elease Rate (m3/s) Pond Dimension: ond Depth ottom elev (perm) op elec (active) CONTR: Orffice No. 1 Orffice C =	0.82051882 s and Volume 3224 228.01 229.01 230.01 OL CHAMBER - 0.125 0.012271 0.63	1.10688136 m3 m m m m m	1.298816		2.060628	0.225134636	0.9 Crest P (m) 229.76		Choose 1	.2m MH	1.75	Q
epth (m) elease Rate (m3/s) Pond Dimension: ond Storage Volume ond Storage Volume ond Storage Volume ottom elev (perm) op elev (perm) op elec (active) Orifice No. 1 Orifice diameter (m)= Area (m2) = Orifice C = Invert (m)=	0.82051882 s and Volume 3224 228.01 229.01 230.01 OL CHAMBER - 0.125 0.012271	1.10688136 m3 m m m m m	1.298816		2.060628	0.225134636 - Length of Weir(m - Elevation of Weir	0.9 Crest P (m) 229.76		Choose 1	.2m MH	1.75	Q
epth (m) elease Rate (m3/s) Pond Dimension: ond Storage Volume ond Storage Volume od Storage Volume ottom elev (perm) op elev (perm) op elec (active) Orifice No. 1 Orifice diameter (m)= Area (m2) = Orifice C = Invert (m)=	0.82051882 s and Volume 3224 228.01 229.01 229.01 230.01 OL CHAMBER - 0.125 0.012271 0.63 228.50	1.10688136 m3 m m m m m	1.298816	1.68811	2.060628	0.225134636 - Length of Weir(m - Elevation of Weir	0.9 Crest P (m) 229.76		Choose 1	.2m MH	1.75	Q
epth (m) elease Rate (m3/s) Pond Dimension: ond Storage Volume ond Depth ottom elev (perm) op elev (perm) op elec (active) Orifice No. 1 Orifice diameter (m)= Area (m ²) = Orifice C = Invert (m)=	0.82051882 s and Volume 3224 228.01 229.01 229.01 230.01 OL CHAMBER - 0.125 0.012271 0.63 228.50	1.10688136	1.298816	1.68811	((D/2)-	0.225134636 - Length of Weir(m - Elevation of Weir Discharge Coeffici Broad-Created Weir	0.9 Crest P (m) 229.76 ht, C 1.7		Choose 1 - Height of V	.2m MH Weir Crest	1.75 //eir and Orifice Coefficients	Q
epth (m) elease Rate (m3/s) Pond Dimension: ond Storage Volume ond Depth ottom elev (perm) op elec (active) <u>Orifice No. 1</u> Orifice diameter (m)= Area (m)= Orifice C = Invert (m)= Orifice C cative)	0.82051882 s and Volume 3224 228.01 229.01 229.01 230.01 OL CHAMBER - 0.125 0.012271 0.63 228.50	1.10688136	1.298816	1.68811	((D/2)-	0.225134636 - Length of Weir(m - Elevation of Weir Discharge Coeffici Broad-Created Weir	0.9 Crest P (m) 229.76 ht, C 1.7		Choose 1 - Height of V	.2m MH Weir Crest 5.0 Typical W		
epth (m) elease Rate (m3/s) Pond Dimension: ond Storage Volume ond Storage Volume ond Storage Volume ond Storage Volume od Depth Ottom elev (perm) op elev (perm) op elev (active) CONTRY Orifice No. 1 Orifice diameter (m)= Area (m²) = Orifice C = Invert (m)= Orifice Centroid (m) = Submerged Orifice Equation: Q = CxAx(2gH)*0.5	0.82051882 s and Volume 3224 228.01 229.01 229.01 230.01 OL CHAMBER - 0.125 0.012271 0.63 228.50	1.10688136	1.298816	1.68811	((D/2)-	0.225134636 0.225134636 Length of Weir(n Elevation of Weir Discharge Coeffici Broad Created weir A broad-created weir at life accord the weire as it from	0.9 Crest P (m) 229.76 ht, C 1.7		Choose 1 - Height of V	.2m MH Weir Crest 5.0 Typical W The following table	/eir and Orifice Coefficients	
epth (m) elease Rate (m3/s) Pond Dimension: ond Storage Volume ond Depth ottom elev (perm) op elev (perm) op elec (active) CONTRI Orifice No. 1 Orifice diameter (m)= Area (m ²) = Orifice C = Invert (m)= Orifice Centroid (m) = Submerged Orifice Equation: $Q = CxAx(2gH)^*0.5$	0.82051882 s and Volume 3224 228.01 229.01 229.01 230.01 OL CHAMBER - 0.125 0.012271 0.63 228.50	1.10688136 m3 m m m m ORIFICE CON Q _w = 1.66 dy(D/2)) where;	1.298816	1.68811	((D/2)-	O.225134636 O.225134636 Length of Weir(n Elevation of Weir Discharge Coeffici Broad-Greated Weir A broad-orderd weir difference of the submaterial and the moder of the submaterial and the moder orderd weir is defined.	0.9 Crest P (m) 229.76 ht, C 1.7		Choose 1 - Height of V	.2m MH Weir Crest 5.0 Typical W The following table	Veir and Orifice Coefficients identifies commonly used coefficients (C)	for orifice and we
epth (m) elease Rate (m3/s) Pond Dimension: ond Storage Volume ond Depth ottom elev (perm) op elev (perm) op elec (active) <u>Orifice No. 1</u> Orifice diameter (m)= Area (m) = Orifice C = Invert (m)= Orifice C cative) Submerged Orifice Equation: $Q = CxAx(2gH)^{v_0.5}$ there: = flow rate (m ³)	0.82051882 s and Volume 3224 229.01 229.01 229.01 230.01 OL CHAMBER - 0.125 0.012271 0.63 228.50 228.56	1.10688136	1.298816 0 orifice Cei 5(((pi*(D ²)/4) d ²) ^{0,2}))/3 d ²) ^{0,2}))/3 m ³ /s)	1.68811	((D/2)-	O.225134636 O.225134636 Length of Weir(n Elevation of Weir Discharge Coeffici Broad-Greated Weir A broad-orderd weir difference of the submaterial and the moder of the submaterial and the moder orderd weir is defined.	0.9 Crest P (m) 229.76 ht, C 1.7		Choose 1 - Height of V	.2m MH Weir Crest 5.0 Typical M The following table Table 1 – Typical C	Veir and Orifice Coefficients identifies commonly used coefficients (C)	for orifice and we
Image: Second	0.82051882 s and Volume 228.01 229.01 229.01 0.125 0.012271 0.63 228.50 228.56	1.10688136 m3 m m m m ORIFICE CON Q _w = 1.6t d/(D/2) Where: Q = flow rate (D = ordifice dimu	1.298816	1.68811 	((D/2)-	O.225134636 O.225134636 Length of Weir(n Elevation of Weir Discharge Coeffici Broad-Greated Weir A broad-orderd weir difference of the submaterial and the moder of the submaterial and the moder orderd weir is defined.	0.9 Crest P (m) 229.76 ht, C 1.7		Choose 1 - Height of V	.2m MH Weir Crest 5.0 Typical W The following table Table 1 - Typical C Application Orifice Orifice Tuble	Veir and Orifice Coefficients identifies commonly used coefficients (C) values for Weir and Orifice Calculations	for orifice and we Typical C Va 0.63 0.80
Pepth (m) icelease Rate (m3/s) Pond Dimension: fond Storage Volume fond Depth Pond Depth CONTRY Orifice Volume CONTRY Orifice No. 1 Orifice Calimeter (m)= Area (m ²) = Orifice Calimeter (m)= Orifice Calimeter (m)= Orifice Calimeter (m)= Orifice Calimeter (m)= Orifice Calimeter (m)= Orifice Calimeter (m)= Submerged Orifice Equation: $Q = CXAX(2gH)^*0.5$ where: $Q = fow rate (m^3)$ Z = constant z = area of opening(m2)	0.82051882 s and Volume 228.01 229.01 229.01 0.125 0.012271 0.63 228.50 228.56	1.10688136	1.298816	1.68811 	((D/2)-	O.225134636 O.225134636 Length of Weir(n Elevation of Weir Discharge Coeffici Broad-Greated Weir A broad-orderd weir difference of the submaterial and the moder of the submaterial and the moder orderd weir is defined.	0.9 Crest P (m) 229.76 ht, C 1.7		Choose 1 - Height of V	.2m MH Weir Crest 5.0 Typical W The following table Table 1-Typical C Application Orifice Orifice Tube Sharp Crested Wei	Veir and Orifice Coefficients dentifies commonly used coefficients (C) values for Weir and Orifice Calculations	for orifice and we Typical C Va 0.63 0.80 1.837
Vond Storage Volume Vond Depth bottom elev (perm) op elev (perm) op elev (perm) op elev (active) CONTRe Orffice No. 1 Orffice No. 1 Orffice C = Invert (m)= Orffice Centroid (m) = Submerged Orffice Equation:	0.82051882 s and Volume 228.01 229.01 229.01 0.125 0.012271 0.63 228.50 228.56	1.10688136 m3 m m m m ORIFICE CON Q _w = 1.6t d/(D/2) Where: Q = flow rate (D = ordifice dimu	1.298816	1.68811 	((D/2)-	O.225134636 O.225134636 Length of Weir(n Elevation of Weir Discharge Coeffici Broad-Greated Weir A broad-orderd weir difference of the submaterial and the moder of the submaterial and the moder orderd weir is defined.	0.9 Crest P (m) 229.76 ht, C 1.7		Choose 1 - Height of V	.2m MH Weir Crest 5.0 Typical W The following table Table 1-Typical C Application Orifice Orifice Tube Sharp Crested Wei	Veir and Orifice Coefficients identifies commonly used coefficients (C) values for Weir and Orifice Calculations r r (SWM Facility and Dam Spillway)	Typical C Val 0.63 0.80

 $Q = (C) (L) (H)^{3/2}$

			b No.	Sheet	Rev.				
AR	RUP		287943-00	7	1				
			ember/Location	Toronto					
b Title	Baldwin Aerodome		rg. Ref.						
alculation	C1a - SWM Allowable Release Rate and Rel	quired Storage	ade by MT	Date 10-10-24	Chd. BS				
inoff Coeffic	cients								
pervious Ar	rea	0.	9						
ervious Area		0.							
emi Impervio retlands Area	ous Area	0. 0.0							
oodlots Are		0.4							
re-Develonm	nent Conditions		Pr	st-Development Conditions				Development Conditions Comparison	
atchment An			9 ha Ca	tchment Area		3.09		Catchment Area 0.000 ha	
npervious Ar				pervious Area		1.05		Impervious Area 1.0530 ha	
ervious Area				rvious Area		2.03		Pervious Area -1.053 ha	-
emi impervic /etlands Area	ous (Gravel Road)			mi Impervious (Gravel Road) etlands Area		0.00			
oodlots Are				oodlots Area		0.00			
omposite C C	Coeff.	0.2	0 Co	mposite C Coeff.		0.44]		
	PEAK FLOW RATES	3.0	9 ha						
	nent Time of Concentration (t)		6 min						
re-Developm	nent Rainfall Intensity (i = A / (t+B)^C)	2.1/5	5.40	10.1/0	25.1/2	50.10	400.10		
torm Event ottom Width,	Wb (m)	2-YR 675.586	5-YR 843.019	10-YR 976.898	25-YR 1133.123	50-YR 1251.473	100-YR 1383.628	*Values taken from Town of Georgina Develo	nmer*
		4.681	4.582	4.745	4.734	4.847	4.905	Design Criteria and Standards	pment
		0.78	0.763	0.76	0.756	0.753	0.754	https://www.georgina.ca/sites/default/files/	page_a
mm/hr)		15.1	20.5	24.1	28.5	31.9	35.1		
elease Rates	s (Q, in L/s)								
orm Event		2-YR	5-YR	10-YR	25-YR	50-YR	100-YR		
a Value ational Meth	hod Release Rates (Q = 2.78 CaCiA)	1.00 25.9	1.00 35.1	1.00 41.3	1.10 53.7	1.20 65.6	1.25 75.2		
	owable Release Rates	NA	NA	NA	NA	NA	NA		
esign Allowa low Area, A (r	able Release Rates	25.9	35.1	41.3	53.7	65.6	75.2		
Vetted perime									
lydraulic Radi									
	city, Qcapacity , m3/s								
Post-Developr	ment Catchment Area ment Runoff Coefficient	3.0 0.4	9 ha 4						
	ment Time of Concentration (t)		3 min						
ost-Developr	ment Rainfall Intensity (i = A / (t+B)^C)								
torm Event		2-YR	5-YR	10-YR	25-YR	50-YR	100-YR		
(mm/hr)		33.2	44.3	51.7	61.0	68.0	74.8		
Required Store									
	Volume Calculation Method		e Rate x Storm Du 0 min	ration					
nitial Storm P	Surgeon		u min 1 min						
			5-YR	10-YR	25-YR	50-YR	100-YR		
'ime Step		2-VP							
'ime Step torm Event	ion (min)	63	66	67	68	69	69		
ime Step torm Event critical Duratio Incontrolled I	ion (min) Peak Flow (L/s)	63 124.8	66 166.6	67 194.8	68 252.5	69 307.2	69 352.1		
ime Step itorm Event Critical Duratio Jncontrolled I		63		67					
/olume (m ³)	Peak Flow (L/s)	63 124.8 261.1	166.6 349.2	67 194.8 408.7	252.5 530.0 100 Year Peak	307.2 645.6	352.1 739.9	ne	
ime Step torm Event ritical Duratio Incontrolled I	Peak Flow (L/s)	63 124.8	166.6 349.2	67 194.8	252.5 530.0	307.2 645.6	352.1	ne	
ime Step torm Event ritical Duratio ncontrolled olume (m ³)	Peak Flow (L/s)	63 124.8 261.1 Storm Duration (min) 60	166.6 349.2 Intensity (i) (mm/hr) 59.51	67 194.8 408.7 Peak Flow (Q) (L/s) 280.05	252.5 530.0 100 Year Peak Runoff Volume (m ³) 1008.17	307.2 645.6 Flow Release Flow Volume (m ³) 270.72	352.1 739.9 Required Storage Volur (m ³) 737.45	ne	
ime Step corm Event ritical Duratio ncontrolled olume (m ³)	Peak Flow (L/s)	63 124.8 261.1 Storm Duration (min) 60 61	166.6 349.2 Intensity (i) (mm/hr) 59.51 58.82	67 194.8 408.7 Peak Flow (Ω) (L/s) 280.05 276.84	252.5 530.0 100 Year Peak Runoff Volume (m ³) 1008.17 1013.22	307.2 645.6 Flow Release Flow Volume (m ³) 270.72 275.23	352.1 739.9 Required Storage Volur (m ³) 737.45 737.99	ne	
ime Step corm Event ritical Duratio ncontrolled olume (m ³)	Peak Flow (L/s)	63 124.8 261.1 Storm Duration (min) 60 61 62	166.6 349.2 Intensity (i) (mm/hr) 59.51 58.82 58.16	67 194.8 408.7 Peak Flow (Q) (L/s) 280.05 276.84 273.71	252.5 530.0 100 Year Peak (m ³) 1008.17 1013.22 1018.21	307.2 645.6 Flow Release Flow Volume (m ³) 270.72 275.23 279.74	352.1 739.9 Required Storage Volur (m ³) 737.45 737.99 738.47	ne	
ime Step corm Event ritical Duratio ncontrolled olume (m ³)	Peak Flow (L/s)	63 124.8 261.1 Storm Duration (min) 60 61 62 63 64	166.6 349.2 Intensity (i) (mm/hr) 59.51 58.82	67 194.8 408.7 Peak Flow (Ω) (L/s) 280.05 276.84	252.5 530.0 100 Year Peak Runoff Volume (m ³) 1008.17 1013.22	307.2 645.6 Flow Release Flow Volume (m³) 270.72 275.23 279.74 284.25 288.77	352.1 739.9 Required Storage Volur (m ³) 737.45 737.99	ne	
ime Step torm Event ritical Duratio ncontrolled olume (m ³)	Peak Flow (L/s)	63 124.8 261.1 Storm Duration (min) 60 61 62 63 64 65	166.6 349.2 Intensity (i) (mm/hr) 59.51 58.82 58.16 57.51 56.88 56.27	67 194.8 408.7 (L/s) 280.05 276.84 273.71 270.67 267.70 264.81	252.5 530.0 100 Year Peak Runoff Volume (m ³) 1008.17 1013.22 1018.21 1023.12 1023.75	307.2 645.6 Release Flow Volume (m ²) 270.72 275.23 279.74 284.25 288.77 293.28	352.1 739.9 Required Storage Volur (m ³) 737.45 737.99 738.47 738.87 739.20 739.47	ne	
ime Step torm Event ritical Duratio ncontrolled olume (m ³)	Peak Flow (L/s)	63 124.8 261.1 Storm Duration (min) 60 61 62 63 64 65 66	166.6 349.2 Intensity (i) (mm/hr) 59.51 58.82 58.16 57.51 56.88 56.27 55.67	67 194.8 408.7 Peak Flow (Q) (L/S) 280.05 276.84 273.71 270.67 267.70 264.81 261.99	252.5 530.0 100 Year Peak (m ⁿ) 1008.17 1013.22 1013.21 1023.12 1027.97 1032.75 1037.47	307.2 645.6 Release Flow Volume (m ³) 270.72 275.23 279.74 284.25 288.77 293.28 297.79	352.1 739.9 Required Storage Volum (m ³) 737.45 737.99 738.47 738.87 739.20 739.47 739.68	ne	
ime Step corm Event ritical Duratio ncontrolled olume (m ³)	Peak Flow (L/s)	63 124.8 261.1 500m Duration (min) 60 61 62 63 64 65 66 66 67	166.6 349.2 (mm/hr) 59.51 58.82 58.16 57.51 56.88 56.27 55.67 55.08	67 194.8 408.7 Peak Flow (Q) (J/s) 280.05 276.84 273.71 270.67 267.70 264.81 261.99 259.23	252.5 530.0 100 Year Peak Runoff Volume (m³) 1008.17 1013.22 1018.21 1023.12 1027.97 1032.75 1037.47 1042.12	307.2 645.6 Release Flow Volume (m³) 270.72 275.23 279.74 284.25 288.77 293.28 297.79 302.30	352.1 739.9 Required Storage Volur (m ¹) 737.45 737.99 738.47 739.20 739.47 739.20 739.47 739.68 739.82	ne	
ime Step torm Event ritical Duratio ncontrolled olume (m ³)	Peak Flow (L/s)	63 124.8 261.1 500m Duration (min) 60 61 62 63 64 65 64 65 66 65 66 67 68 69	166.6 349.2 Intensity (i) (mm/hr) 59.51 58.82 58.16 57.51 56.88 56.27 55.67	67 194.8 408.7 Peak Flow (Q) (L/S) 280.05 276.84 273.71 270.67 267.70 264.81 261.99	252.5 530.0 100 Year Peak (m ⁿ) 1008.17 1013.22 1013.21 1023.12 1027.97 1032.75 1037.47	307.2 645.6 Release Flow Volume (m ³) 270.72 275.23 279.74 284.25 288.77 293.28 297.79	352.1 739.9 Required Storage Volum (m ³) 737.45 737.99 738.47 738.87 739.20 739.47 739.68	ne	
ime Step torm Event ritical Duratio ncontrolled olume (m ³)	Peak Flow (L/s)	63 124.8 261.1 5torm Duration (min) 60 61 62 63 64 65 66 65 66 67 68 69 70	166.6 349.2 (mm/hr) 59.51 58.82 58.16 57.51 56.88 56.27 55.08 54.51 53.96 53.41	67 194.8 408.7 (L/s) 280.05 276.84 273.71 270.67 267.70 264.81 261.99 259.23 256.55 253.93 251.37	252.5 530.0 100 Year Peak [Runoff Volume (m ³) 1008.17 1013.22 1018.21 1023.12 1023.12 1023.12 1037.47 1037.47 1037.47 1042.12 1046.72 1054.26 1055.26	307.2 645.6 Release Flow Volume (m ³) 270.72 275.23 279.74 284.25 288.77 293.28 297.79 302.30 306.81 311.33 315.84	352.1 739.9 Required Storage Volur (m ¹) 737.45 737.99 738.47 739.20 739.47 739.87 739.87 739.82 739.91 739.93 739.93		
ime Step torm Event ritical Duratio ncontrolled olume (m ³)	Peak Flow (L/s)	63 124.8 261.1 500m Duration (min) 60 61 62 63 64 65 66 66 66 66 66 67 68 69 70 71	166.6 349.2 (mm/hr) 59.51 58.82 58.16 57.51 56.88 56.27 55.67 55.08 54.51 53.96 53.41 52.88	67 194.8 408.7 Peak Flow (Q) (U/S) 280.05 276.84 273.71 270.67 267.70 264.81 261.99 259.23 256.55 253.93 251.37 248.87	252.5 530.0 100 Year Peak Runoff Volume (m ³) 1008.17 1013.22 1013.21 1023.12 1027.97 1032.75 1037.47 1046.72 1051.26 1055.74 1060.17	307.2 645.6 Release Flow Volume (m ¹) 270.72 275.23 279.74 284.25 288.77 293.28 297.79 302.30 306.81 311.33 315.84 320.35	352.1 739.9 Required Storage Volum (m ⁴) 737.45 737.99 738.47 738.47 739.20 739.47 739.47 739.68 739.91 739.93 739.90 739.93		
ime Step torm Event iritical Duratio Incontrolled folume (m ³)	Peak Flow (L/s)	63 124.8 261.1 500m Duration (min) 60 61 62 63 64 65 66 66 66 67 68 69 70 71 72	166.6 349.2 (mm/hr) 59.51 58.82 58.16 57.51 56.88 56.27 55.08 54.51 53.96 53.41 52.88 52.36	67 194.8 408.7 Peak Flow (Q) (J/s) 280.05 276.84 273.71 270.67 267.70 264.81 261.99 259.23 256.55 253.93 255.39 253.37 248.87 246.42	252.5 530.0 100 Year Peak [Runoff Volume (m ^h) 1008.17 1008.17 1013.22 1018.21 1022.12 1022.97 1037.47 1037.47 1046.72 1055.74 1066.17 1066.154	307.2 645.6 Release Flow Volume (m ³) 270.72 275.23 279.74 284.25 288.77 293.28 297.79 302.30 306.81 311.33 315.84 320.35 324.86	352.1 739.9 Required Storage Volur (m ³) 737.45 737.99 738.47 739.20 739.20 739.47 739.68 739.91 739.91 739.91 739.92 739.91 739.93 739.93 739.93 739.93		
ime Step torm Event ritical Duratio ncontrolled olume (m ³)	Peak Flow (L/s)	63 124.8 261.1 500m Duration (min) 60 61 62 63 64 65 66 66 66 66 66 67 68 69 70 71	166.6 349.2 (mm/hr) 59.51 58.82 58.16 57.51 56.88 56.27 55.67 55.08 54.51 53.96 53.41 52.88	67 194.8 408.7 Peak Flow (Q) (U/S) 280.05 276.84 273.71 270.67 267.70 264.81 261.99 259.23 256.55 253.93 251.37 248.87	252.5 530.0 100 Year Peak Runoff Volume (m ³) 1008.17 1013.22 1013.21 1023.12 1027.97 1032.75 1037.47 1046.72 1051.26 1055.74 1060.17	307.2 645.6 Release Flow Volume (m ¹) 270.72 275.23 279.74 284.25 288.77 293.28 297.79 302.30 306.81 311.33 315.84 320.35	352.1 739.9 Required Storage Volum (m ⁴) 737.45 737.99 738.47 738.47 739.20 739.47 739.47 739.68 739.91 739.93 739.90 739.93 739.90 739.82		

ARU				Sheet	Rev.				
	UP		287943-00	8	1				
	U 1		fember/Location	Toronto					
ob Title	Baldwin Aerodome	C	irg. Ref.						
alculation	C1b - SWM Allowable Release Rate and Requ	ired Storage	fade by M	Date 10-10-24	Chd. BS				
<i>inoff Coefficien</i> pervious Area	ts	0.	9						
ervious Area		0.	2						
mi Impervious /	Area	0.							
etlands Area		0.0							
oodlots Area		0.4	2						
e-Development	Conditions			Post-Development Conditions				Development Conditions Compa	
atchment Area				Catchment Area		7.31		Catchment Area -0.002 ha	
npervious Area ervious Area				Impervious Area Pervious Area		4.50 2.81	na ha	Impervious Area 4.3460 ha Pervious Area -2.126 ha	
emi Impervious ((Gravel Road)			Semi Impervious (Gravel Road)		0.00		1010037100 2.12011	
etlands Area			1 ha	Wetlands Area		0.00			
/oodlots Area omposite C Coef		0.0		Woodlots Area Composite C Coeff.		0.00	ha		
						0,000			
LLOWABLE PEAI	K FLOW RATES								
	t Catchment Area		1 ha						
re-Development	t Time of Concentration (t)	13	7 min						
	Rainfall Intensity (i = A / (t+B)^C)								
torm Event	(m)	2-YR	5-YR	10-YR	25-YR	50-YR	100-YR		
ottom Width, Wb	(m)	675.586 4.681	843.019 4.582	976.898 4.745	1133.123 4.734	1251.473 4.847	1383.628 4.905	*Values taken from Town of Geo Design Criteria and Standards	orgina Development
		0.78	0.763	0.76	0.756	0.753	0.754	https://www.georgina.ca/sites/	default/files/page_a
mm/hr)		14.2	19.3	22.6	26.8	30.0	33.0		
elease Rates (Q,	(a. 1. (a.)								
torm Event	in L/S)	2-YR	5-YR	10-YR	25-YR	50-YR	100-YR		
a Value		1.00	1.00	1.00	1.10	1.20	1.25		
	Release Rates (Q = 2.78 CaCiA)	55.9	76.0	89.3	116.2	142.0	162.7		
egulated Allowa esign Allowable	Ible Release Rates	NA 55.9	NA 76.0	NA 89,3	NA 116.2	NA 142.0	NA 162.7		
low Area, A (m ²)	Release Rates	22.9	76.0	69.5	110.2	142.0	102.7		
etted perimeter,	Wp (m)								
ydraulic Radius,	Rh (m)								
	Qcapacity, m3/s		1 ha						
ost-Developmen	nt Catchment Area nt Runoff Coefficient	0.6							
	nt Time of Concentration (t)		5 min						
	it time of concentration (t)								
est Developmen									
	nt Rainfall Intensity (i = A / (t+B)^C)	2-YR	5-YR	10-YR	25-YR	50-YR	100-YR		
orm Event		2-YR 32.1	5-YR 42.9	10-YR 50.2	25-YR 59.1	50-YR 65.9	100-YR 72.5		
torm Event (mm/hr)	t Rainfall Intensity (i = A / (t+B)^C)								
torm Event (mm/hr) equired Storage	nt Rainfall Intensity (i = A / (t+B)^C) Volume	32.1	42.9	50.2				_	
torm Event (mm/hr) equired Storage elease Flow Volu- nitial Storm Dura	t Rainfall Intensity (i = A / (t+B)^C) Volume ume Calculation Method	32.1 Allowable Releat	42.9 se Rate x Storm 0 min	50.2				_	
torm Event (mm/hr) equired Storage elease Flow Volu hitial Storm Dura	t Rainfall Intensity (i = A / (t+B)^C) Volume ume Calculation Method	32.1 Allowable Releat	42.9 se Rate x Storm	50.2				_	
torm Event (mm/hr) equired Storage elease Flow Volu nitial Storm Dura ime Step	t Rainfall Intensity (i = A / (t+B)^C) Volume ume Calculation Method	32.1 Allowable Releat	42.9 se Rate x Storm 0 min	50.2				_	
torm Event (mm/hr) equired Storage elease Flow Volu nitial Storm Dura ime Step torm Event ritical Duration (t Rainfall Intensity (i = A / (t+8)^C) Volume ume Calculation Method tition (min)	32.1 Allowable Releas 1 2-YR 106	42.9 se Rate x Storm 0 min 1 min 5-YR 113	50.2 Duration 10-YR 115	59.1 25-YR 117	65.9 50-YR 118	72.5 100-YR 118		
torm Event (mm/hr) equired Storage elease Flow Volu nitial Storm Dura ime Step torm Event ritical Duration (ncontrolled Peal	t Rainfall Intensity (i = A / (t+8)^C) Volume ume Calculation Method tition (min)	32.1 Allowable Releas 1 2-YR 106 411.6	42.9 se Rate x Storm 0 min 1 min 5-YR 113 549.7	50.2 Duration 10-YR 115 642.9	25-YR 117 833.3	50-YR 118 1014.1	72.5 100-үк 118 1162.3		
torm Event (mm/hr) tequired Storage telease Flow Volu nitial Storm Dura ime Step torm Event tritical Duration (Incontrolled Peal	t Rainfall Intensity (i = A / (t+8)^C) Volume ume Calculation Method tition (min)	32.1 Allowable Releas 1 2-YR 106	42.9 se Rate x Storm 0 min 1 min 5-YR 113	50.2 Duration 10-YR 115	59.1 25-YR 117	65.9 50-YR 118	72.5 100-YR 118		
torm Event (mm/hr) Required Storage Release Flow Volu- nitial Storm Dura ime Step torm Event critical Duration (Jincontrolled Peal folume (m ³)	tt Rainfall Intensity (I = A / (t+B)^C) Volume ume Calculation Method tition (min) k Flow (L/S)	32.1 Allowable Relea: 1 2-YR 106 411.6 1045.6	42.9 se Rate x Storm 0 min 1 min 5-YR 113 549.7 1413.3	50.2 50.2 Duration 10-YR 115 642.9 1659.2	25-YR 117 833.3 2157.6 100 Year Peak	50-YR 118 1014.1 2634.9 Flow	72.5 100-YR 118 1162.3 3019.0		
torm Event (mm/hr) equired Storage elease Flow Volu- nitial Storm Dura ime Step torm Event ritical Duration (ncontrolled Peal olume (m ³)	tt Rainfall Intensity (I = A / (t+B)^C) Volume ume Calculation Method tition (min) k Flow (L/S)	32.1 Allowable Releas 1 2-YR 106 411.6 1045.6 Storm Duration	42.9 se Rate x Storm 0 min 1 min 5-YR 113 549.7 1413.3	50.2 Duration 10-YR 115 642.9 1659.2 Peak Flow (Q)	25-YR 117 833.3 2157.6 100 Year Peak	50-YR 118 1014.1 2634.9 Flow Release Flow Volume	72.5 100-YR 118 1162.3 3019.0 Required Storage Volun		
orm Event mm/hr) equired Storage elease Flow Volu itial Storm Dura me Step orm Event ritical Duration (ncontrolled Peal olume (m ³)	tt Rainfall Intensity (I = A / (t+B)^C) Volume ume Calculation Method tition (min) k Flow (L/S)	32.1 Allowable Releas 1 2-YR 106 411.6 1045.6 Storm Duration (min)	42.9 se Rate x Storm 0 min 1 min 5-YR 113 549.7 1413.3 Intensity (i) (mm/hr)	50.2 50.2 Duration 10-YR 115 642.9 1659.2 Peak Flow (Q) (L/s)	25-YR 117 833.3 2157.6 100 Year Peak (m ²)	50-YR 118 1014.1 2634.9 Flow Release Flow Volume (m ³)	72.5 100-YR 118 1162.3 3019.0 Required Storage Volum (m ³)	ne	
orm Event mm/hr) equired Storage elease Flow Volu itial Storm Dura me Step orm Event ritical Duration (ncontrolled Peal olume (m ³)	tt Rainfall Intensity (I = A / (t+B)^C) Volume ume Calculation Method tition (min) k Flow (L/S)	32.1 Allowable Release 10 411.6 1045.6 Storm Duration (min) 110	42.9 se Rate x Storm 0 min 1 min 5-YR 113 549.7 1413.3 i Intensity (i) (mm/hr) 38.68 38.43	50.2 50.2 Duration 10-YR 115 642.9 1659.2 Peak Flow (Q) (L/s) 619.78 615.74	25-YR 117 83.3 2157.6 Runoff Volume (m ³) 4090.53 4100.84	50-YR 118 1014.1 2634.9 Flow. Release Flow Volume (m ⁴) 1073.80 1083.57	72.5 100-YR 118 1162.3 3019.0 Required Storage Volum (m ³) 3016.73 3017.27	me	
orm Event mm/hr) equired Storage elease Flow Volu itial Storm Dura me Step orm Event ritical Duration (ncontrolled Peal olume (m ³)	tt Rainfall Intensity (I = A / (t+B)^C) Volume ume Calculation Method tition (min) k Flow (L/S)	32.1 Allowable Relea: 106 411.6 1045.6 Storm Duration (min) 110 111 112	42.9 42.9 0 min 1 min 5-YR 113 549.7 1413.3 intensity (i) (mm/hr) 38.68 38.43 38.18	50.2 50.2 Duration 10-YR 115 642.9 1659.2 Peak Flow (Q) (<i>U</i> /s) 619.78 615.74 611.77	25-YR 117 833.3 2157.6 100 Year Peak Runoff Volume (m ³) 4090.53 4100.84 4111.07	50-YR 118 1014.1 2634.9 Flow (m ³) 1073.80 1073.80 1083.57 1093.33	72.5 100-YR 118 1162.3 3019.0 Required Storage Volum (m ⁸) 3016.73 3017.27 3017.74	ne	
orm Event mm/hr) equired Storage elease Flow Volu itial Storm Dura me Step orm Event itical Duration (ncontrolled Peal olume (m ³)	tt Rainfall Intensity (I = A / (t+B)^C) Volume ume Calculation Method tition (min) k Flow (L/S)	32.1 Allowable Releas 1 2-YR 106 411.6 1045.6 Storm Duration (min) 110 111 112 113	42.9 42.9 0 min 1 min 5-YR 113 549.7 1413.3 11413.3 11413.3 111411	50.2 50.2 Duration 10-YR 115 642.9 1659.2 Peak Flow (Q) (U/s) 619.78 615.74 611.77 607.85	25-YR 25-YR 117 833.3 2157.6 100 Year Peak Runoff Volume (m ³) 4090.53 4100.64 4111.07 4221.22	50-YR 118 1014.1 2634.9 Flow. Release Flow Volume (m ³) 1073.80 1083.57 1093.33 1103.09	72.5 100-YR 118 1162.3 3019.0 Required Storage Volum (m ³) 3016.73 3017.27 3017.74 3018.13	ne	
orm Event mm/hr) equired Storage elease Flow Volu itial Storm Dura me Step orm Event ritical Duration (ncontrolled Peal olume (m ³)	tt Rainfall Intensity (I = A / (t+B)^C) Volume ume Calculation Method tition (min) k Flow (L/S)	32.1 Allowable Released 106 411.6 1045.6 Storm Duration (min) 110 111 112 113 114	42.9 42.9 0 min 1 min 5-YR 113 549.7 1413.3 1413.3 10.1011/0000000000000000000000000000000	10-YR 10-YR 115 642.9 1659.2 Peak Flow (Q) (L/s) 619.78 615.74 611.77 607.85 603.99	25-YR 59.1 25-YR 117 833.3 2157.6 100 Year Peak Runoff Volume (m ³) 4090.53 4090.53 4100.84 411.07 4121.22 4131.30	50-YR 118 1014.1 2634.9 Flow Release Flow Volume (m ³) 1073.80 1083.57 1033.33 1103.09 1112.85	72.5 100-YR 118 1162.3 3019.0 Required Storage Volum (m ³) 3016.73 3017.27 3017.74 3018.13 3018.45	ne	
orm Event mm/hr) equired Storage elease Flow Volu itial Storm Dura me Step orm Event ritical Duration (ncontrolled Peal olume (m ³)	tt Rainfall Intensity (I = A / (t+B)^C) Volume ume Calculation Method tition (min) k Flow (L/S)	32.1 Allowable Releas 1 2-YR 106 411.6 1045.6 Storm Duration (min) 110 111 112 113	42.9 42.9 0 min 1 min 5-YR 113 549.7 1413.3 11413.3 11413.3 111411	50.2 50.2 Duration 10-YR 115 642.9 1659.2 Peak Flow (Q) (U/s) 619.78 615.74 611.77 607.85	25-YR 25-YR 117 833.3 2157.6 100 Year Peak Runoff Volume (m ³) 4090.53 4100.64 4111.07 4221.22	50-YR 118 1014.1 2634.9 Flow. Release Flow Volume (m ³) 1073.80 1083.57 1093.33 1103.09	72.5 100-YR 118 1162.3 3019.0 Required Storage Volum (m ³) 3016.73 3017.27 3017.74 3018.13	ne	
orm Event mm/hr) equired Storage elease Flow Volu itial Storm Dura me Step orm Event itical Duration (ncontrolled Peal olume (m ³)	tt Rainfall Intensity (I = A / (t+B)^C) Volume ume Calculation Method tition (min) k Flow (L/S)	32.1 Allowable Releas 1 06 411.6 1045.6 Storm Duration (min) 110 111 112 113 114 115 116 117	42.9 42.9 0 min 1 min 5-YR 1413.3 1 (mm/hr) 38.68 38.43 38.18 37.70 37.46 37.70 37.46 37.23 37.03	10-YR 115 642.9 1659.2 Peak Flow (Q) (I/s) 615.74 615.74 613.78 603.99 600.19 596.44 592.75	25-YR 117 833.3 2157.6 100 Year Peak Runoff Volume (m) 4090.53 4100.84 4111.07 4121.22 4131.30 4141.31 4151.24 4151.10	50-YR 118 1014.1 2634.9 Flow (m ³) 1073.80 1083.57 1093.33 1103.09 1112.85 1122.61 1132.37 1142.14	72.5 100-YR 118 1162.3 3019.0 Required Storage Volum (m ³) 3016.73 3017.27 3017.74 3018.43 3018.45 3018.69 3018.87		
orm Event mm/hr) equired Storage elease Flow Volu itial Storm Dura me Step orm Event itical Duration (ncontrolled Peal olume (m ³)	tt Rainfall Intensity (I = A / (t+B)^C) Volume ume Calculation Method tition (min) k Flow (L/S)	32.1 Allowable Release 106 411.6 1045.6 Storm Duration (min) 110 111 112 113 114 115 116 117 118	42.9 42.9 6 Rate x Storm 0 min 1 min 5-YR 113 549.7 1413.3 1413.3 1413.3 8.6.8 8.8.43 8.8.18 8.7.9 37.46 37.23 37.00 37.46 37.23 37.00 36.77	50.2 50.2 50.2 Duration 10-YR 115 642.9 1659.2 Peak Flow (Q) (L/s) 619.78 615.74 611.77 607.85 603.99 600.19 596.44 592.75 589.11	25-YR 117 833.3 2157.6 Runoff Volume (m [*]) 4090.53 4100.84 4111.07 4121.22 4131.30 441.31 4151.24 4151.12	50-YR 118 1014.1 2634.9 How (m ³) 1073.80 1083.57 1093.33 1103.09 1112.85 1122.61 1132.37 1142.14 1151.90	72.5 100-YR 118 1162.3 3019.0 Required Storage Volum (m ³) 3016.73 3017.74 3018.13 3018.45 3018.69 3018.87 3018.97 3019.00	ne	
corm Event (mm/hr) equired Storage elease Flow Volu itial Storm Dura me Step corm Event ritical Duration (ncontrolled Peal olume (m ³)	tt Rainfall Intensity (I = A / (t+B)^C) Volume ume Calculation Method tition (min) k Flow (L/S)	32.1 Allowable Released 106 411.6 1045.6 Storm Duration (min) 110 111 112 113 114 115 116 117 118 119	42.9 42.9 0 min 1 min 5-YR 113 543 7 1413.3 8.68 38.48 38.48 38.48 38.48 38.48 38.48 37.70 37.46 37.20 37.46 37.20 37.00 36.57 36.57	10-YR 10-YR 115 642.9 1659.2 Peak Flow (Q) (L/s) 619.78 615.74 611.77 607.85 603.99 600.19 596.644 592.75 589.11 585.52	25-YR 25-YR 117 833.3 2157.6 100 Year Peak Runoff Volume (m ³) 4090.53 4100.84 4111.07 4121.22 4131.30 4141.31 4151.24 4161.10 4170.90 4180.62	50-YR 118 1014.1 2634.9 Flow Release Flow Volume (m ³) 1073.80 1083.57 1033.33 1103.09 1112.85 1122.61 1133.37 1142.14 1151.90 1161.66	72.5 100-YR 118 1162.3 3019.0 Required Storage Volum (m ³) 3016.73 3017.74 3017.74 3017.74 3018.13 3018.45 3018.69 3018.87 3019.00 3018.96		
torm Event (mm/hr) equired Storage elease Flow Volu- nitial Storm Dura ime Step torm Event ritical Duration (ncontrolled Peal olume (m ³)	tt Rainfall Intensity (I = A / (t+B)^C) Volume ume Calculation Method tition (min) k Flow (L/S)	32.1 Allowable Release 106 411.6 1045.6 Storm Duration (min) 110 111 112 113 114 115 116 117 118	42.9 42.9 142.9 113 549.7 1413.3 113 549.7 1413.3 1413.3 1413.3 1413.3 1413.3 36.68 38.43 38.43 38.43 37.94 37.46 37.43 37.40 37.46 37.23 37.00 36.77	50.2 50.2 50.2 Duration 10-YR 115 642.9 1659.2 Peak Flow (Q) (L/s) 619.78 615.74 611.77 607.85 603.99 600.19 596.44 592.75 589.11	25-YR 117 833.3 2157.6 Runoff Volume (m [*]) 4090.53 4100.84 4111.07 4121.22 4131.30 441.31 4151.24 4151.12	50-YR 118 1014.1 2634.9 How (m ³) 1073.80 1083.57 1093.33 1103.09 1112.85 1122.61 1132.37 1142.14 1151.90	72.5 100-YR 118 1162.3 3019.0 Required Storage Volum (m ³) 3016.73 3017.74 3018.13 3018.45 3018.69 3018.87 3018.97 3019.00		
torm Event (mm/hr) equired Storage elease Flow Volu nitial Storm Dura ime Step torm Event ritical Duration (incontrolled Peal	tt Rainfall Intensity (I = A / (t+B)^C) Volume ume Calculation Method tition (min) k Flow (L/S)	32.1 Allowable Release 1 2-YR 106 411.6 1045.6 1045.6 1045.6 1045.6 1045.6 101 112 113 114 115 116 117 117 118 119 120 121 122	42.9 42.9 6 Rate × Storm 0 min 1 min 549.7 1413.3 741.3 849.7 1413.3 849.7 1413.3 8.843 8.843 8.843 8.843 8.843 8.843 8.843 8.7.9 8.7.70 3.7.46 3.7.23 3.7.00 3.7.73 3.6.77 3.6.57 3.6.32 3.6.32 3.6.31 3.5.89	10-YR 10-YR 115 642.9 1659.2 Peak Flow (Q) (U/s) 619.78 615.74 611.77 607.85 603.99 600.19 596.44 592.75 589.11 585.52 589.11 585.52 589.18 578.49 578.49 575.05	25-YR 25-YR 117 83.3 2157.6 100 Year Peak Runoff Volume (m ³) 4090.53 4100.84 411.07 4121.22 4131.30 4141.31 4151.24 4161.10 4170.90 4180.62 4199.87 4299.40	50-YR 118 1014.1 2634.9 Flow. Release Flow Volume (m ³) 1073.80 1083.57 1093.33 1103.09 1112.85 1122.61 1132.37 1142.14 1151.90 1161.66 1171.42 1181.18 1190.95	72.5 100-YR 118 1162.3 3019.0 Required Storage Volum (m ⁸) 3016.73 3017.27 3017.74 3018.13 3018.45 3018.69 3018.87 3018.97 3018.96 3018.86 3018.86 3018.69 3018.86		
torm Event (mm/hr) equired Storage elease Flow Volu- nitial Storm Dura ime Step torm Event ritical Duration (Incontrolled Peal folume (m ³)	tt Rainfall Intensity (I = A / (t+B)^C) Volume ume Calculation Method tition (min) k Flow (L/S)	32.1 Allowable Release 106 411.6 1045.6 Storm Duration (min) 110 111 112 113 114 115 116 117 118 119 120 121	42.9 42.9 6 Rate x Storm 0 min 1 min 5-YR 113 134 134 134 134 134 134 134 134 134	10-YR 115 642.9 1659.2 Peak Flow (Q) (U/s) 619.78 615.74 611.77 603.99 600.19 596.644 592.75 589.911 585.52 581.98 578.49	25-YR 117 833.3 2157.6 100 Year Peak (m ³) 4090.53 4100.84 411.07 4121.22 4131.30 4141.31 4151.124 4159.124 415	50-YR 118 1014.1 2634.9 Flow (m ²) 1073.80 1083.57 1093.33 1103.09 1112.85 1122.61 1132.37 1142.14 1151.90 1161.66 1171.42 1181.18	72.5 100-YR 118 1162.3 3019.0 Required Storage Volum (m ³) 3016.73 3017.74 3018.45 3018.45 3018.45 3018.45 3018.87 3018.97 3018.97 3018.97 3018.96 3018.86 3018.86		

				-	_		
		b No. 287943-00	Sheet 9	Rev.			
ARUP		ember/Location					
Job Title			Toronto				
Baldwin Aerodome		g. Ref.					
Calculation C2 - SWM Allowable Release Rate and Required	Storage	ade by MT	Date 10-10-24	Chd. BS			
Runoff Coefficients							
Impervious Area	0.9	9					
Pervious Area	0.2	2					
Semi Impervious Area	0.5						
Wetlands Area	0.05						
Woodlots Area	0.42	2	P. (P. (
<u>Pre-Development Conditions</u> Catchment Area	9.39) ha	Post-Development Conditions Catchment Area		9.39		Development Conditions Comparison Catchment Area 0.00 ha 09
Impervious Area	9.5		Impervious Area		9.39		Impervious Area 0.77 ha 89
Pervious Area	4.12		Pervious Area		8.51		Pervious Area 4.39 ha 479
Semi Impervious (Gravel Road)	0.03		Semi Impervious (Gravel Road)		0.00		
Wetlands Area	5.15		Wetlands Area		0.00		
Woodlots Area	0.00		Woodlots Area		0.00		
Composite C Coeff.	0.13	3	Composite C Coeff.		0.27]	
ALLOWABLE PEAK FLOW RATES							
Pre-Development Catchment Area	9.39) ha					
Pre-Development Time of Concentration (t)		5 min					
		-					
Pre-Development Rainfall Intensity (i = A / (t+B)^C)							
Storm Event	2-YR	5-YR	10-YR	25-YR	50-YR	100-YR	_
A	675.586	843.019	976.898	1133.123	1251.473	1383.628	*Values taken from Town of Georgina Development
Bottom Width, Wb (m)	4.681	4.582	4.745	4.734	4.847	4.905	Design Criteria and Standards
i (mm/hr)	0.78	0.763	0.76	0.756	0.753 21.6	0.754 23.7	https://www.georgina.ca/sites/default/files/page_assets
,	10.1	15.0	1012	10.1	21.0	23.7	
Release Rates (Q, in L/s)							
Storm Event	2-YR	5-YR	10-YR	25-YR	50-YR	100-YR	_
Ca Value	1.00	1.00	1.00	1.10	1.20	1.25	
Rational Method Release Rates (Q = 2.78 CaCiA)	33.2	45.4	53.4	69.6	85.2	97.6	
Regulated Allowable Release Rates	NA	NA 45.4	NA 53.4	NA	NA	NA	
Design Allowable Release Rates Flow Area, A (m ²)	33.2	45.4	53.4	69.6	85.2	97.6	
Wetted perimeter, Wp (m) Hvdraulic Radius, Rh (m)							
Full flow capacity, Qcapacity, m3/s	9.39) ha					
Post-Development Runoff Coefficient	9.35						
Post-Development Time of Concentration (t)		min					
	15.						
Post-Development Rainfall Intensity (i = A / (t+B)^C)							
Storm Event	2-YR	5-YR	10-YR	25-YR	50-YR	100-YR	_
i (mm/hr)	13.0	17.7	20.9	24.7	27.7	30.4	
Required Storage Volume							
Release Flow Volume Calculation Method	Allowable Release	e Rate x Storm Du	ration				
Initial Storm Duration) min					
Time Step	:	L min					
Storm Evont	2-YR	E VP	10 VP	DE VR	EO VR	100-YR	
Storm Event Critical Duration (min)	95	5-YR 100	10-YR 102	25-YR 103	50-YR 104	100-YR	-
Uncontrolled Peak Flow (L/s)	90.5	123.1	102	188.4	230.4	263.9	
Volume (m ³)	548.5	737.7	865.0	1123.4	1370.2	1570.3	
							-
L				100 Year Peak F			7
Summary of Calculations	Storm Duration	Intensity (i)	Peak Flow (Q)	Runoff Volume	Release Flow Volume	Required Storage Volume	
	(min) 100	(mm/hr) 41.43	(L/s) 359.24	(m ³) 2155.43	(m ³) 585.52	(m ³) 1569.91	4
	100	41.43	359.24 356.68	2155.43 2161.46	585.52	1569.91 1570.09	4
	101	41.14	354.16	2161.46	597.23	1570.09	1
	102	40.55	351.68	2173.39	603.09	1570.30	-
	103	40.28	349.24	2179.28	608.94	1570.34	MAX
	105	40.00	346.84	2185.12	614.80	1570.32	1
	106	39.73	344.48	2190.92	620.65	1570.27	1
	107	39.46	342.16	2196.67	626.51	1570.16]
	108	39.20	339.87	2202.38	632.36	1570.01	1
	109	38.94	337.62	2208.04	638.22	1569.82	

UP			287943-00 Member/Location Toro	10 onto		1			
Baldwin Airport			Drg.						
C2 - Outlet Structure			Made by BS Da	^{ate} 08-01-24	Chd.				
1. Orifice and Weir						'			
				Eme	rgency				
			Orifice No. 1	Deput	ow Weir				
		Depth Above Orifice		Above Overflow	Overflow Weir				
	Elevation (m)	Centroid (m)	Orifice No. 1 Flow (m ³ /s)	Weir (m)	Flow (m ³ /s)	Total Flow (m3/s)			
	228.50	0.00	0.000	0.00	0.000	0.000			
	228.55 228.60	0.00	0.000	0.00	0.000	0.000 0.007			
	228.65 228.70	0.09	0.010 0.013	0.00	0.000	0.010 0.013			
	228.75	0.19	0.015	0.00	0.000	0.015			
	228.80 228.85	0.24 0.29	0.017 0.018	0.00	0.000	0.017 0.018			
2 Year	228.90 228.95	0.34 0.39	0.020 0.021	0.00	0.000	0.020 0.021			
5 year	229.00	0.44	0.023	0.00	0.000	0.023			
10 year	229.05 229.10	0.49	0.024 0.025	0.00	0.000	0.024 0.025			
,	229.15	0.59	0.026	0.00	0.000	0.026			
	229.20 229.25	0.64 0.69	0.027 0.028	0.00	0.000	0.027 0.028			
25 year	229.30 229.35	0.74 0.79	0.029 0.030	0.00	0.000	0.029 0.030			
50 year	229.40	0.84	0.031	0.00	0.000	0.031			
50 year	229.45 229.50	0.89	0.032	0.00	0.000	0.032 0.035			
100 year	229.55 229.60	0.99	0.034 0.035	0.06	0.022	0.057			
	229.65	1.09	0.036	0.16	0.098	0.134			
	229.70 229.75	1.14 1.19	0.037	0.21	0.147	0.184 0.240			
	229.80 229.85	1.24 1.29	0.038 0.039	0.31	0.264 0.330	0.302 0.369			
	229.90	1.34	0.040	0.41	0.402	0.441			
	229.95 230.00	1.39	0.040	0.46	0.477	0.518 0.598			
	230.05 230.10	1.49 1.54	0.042	0.56	0.641 0.729	0.683 0.771			
	230.15	1.59	0.043	0.66	0.820	0.864			
	230.20 230.25	1.64 1.69	0.044	0.71	0.915	0.959 1.058			
	230.30 230.35	1.74 1.79	0.045 0.046	0.81	1.115	1.161 1.266			
	230.40	1.84	0.046	0.91	1.328	1.375			
Top of Pond	230.45 230.50	1.89 1.94	0.047 0.048	0.96	1.439 1.553	1.486 1.601			
Orifice No. 1	CONTROL	HAMBER - ORI	IFICE CONTROL	T			Overflow Weir	OVERFLOW WEIR	
 Orifice diameter (m)= Area (m²) = 	0.125 0.012271					- Length of Weir(m)	0.9 229.49	Choose 1.2m MH - Height of Weir Crest 1	Q = (C)
- Orifice C =	0.63					- Elevation of Weir Crest P (m) Discharge Coefficient, C	1.7	- Height of Weir Crest 1	
- Invert (m)= - Orifice Centroid (m) =	228.50 228.56								
		Submerged							
Submorged Oriflee Ecurit		Orifice Equation				Broad-Crested Weir A broad-crested weir differs from a sharp-crested we	ir in that the weir is wide enough to	5.0 Typical Weir and Orifice Coefficients	
						A broad-created weir differs from a sharp-created we support the water as it flows over the weir (see figure created weir is determined using:	8.21). The discharge over a broad -	The following table identifies commonly used coefficients (C) for orifice and weir analysis. Table 1 – Typical C Values for Weir and Orifice Calculations	
Submerged Orifice Equation: Q = CxAx(2gH)^0.5		(Flow Below							
		where;	n ³ /s)			O = CLH ₂₀	/	Application Typical C Values	
$Q = CxAx(2gH)^{*}0.5$ where; Q = flow rate (m3) C = constant		where; Q = flow rate (n D=orifice diame	eter (m)			G+CH**	T	Application Typical C Values Orifice 0.63 Orifice Tube 0.80	
Q = CxAx(2gH)^0.5 where; Q = flow rate (m ³)		where; Q = flow rate (n D=orifice diame				G=CAP	Т	Application Typical C Values Onfrice 0.8 Onfrice Tuble 0.80 Sharp Cristel Weir 1.837 Broad Cristel Weir (SMM Facility and Dans Spillway) 1.7	
$\label{eq:Q} \begin{split} & Q = CxAx(2gH)^{A}0.5 \\ & \text{where;} \\ & Q = flow rate (m^3) \\ & C = constant \\ & A = area of opening(m^2) \end{split}$		where; Q = flow rate (n D=orifice diame	eter (m)			Figure 1.21 - Broad Cree	nod Weir	Application Typical C Values Onfice 0.63 Onfice Tube 0.80 Sharp Crested Wer 1.837	
$\label{eq:Q} \begin{split} & Q = CxAx(2gH)^{A}0.5 \\ & \text{where;} \\ & Q = flow rate (m^3) \\ & C = constant \\ & A = area of opening(m^2) \\ & H = net head on the orifice \end{split}$	2 Voor	where; Q = flow rate (n D=orifice diame d=depth of flow	eter (m) / above invert (m)	25 Var	50 Ver	Figure 8.21-Broad Cree	H Red Weir	Application Typical C Values Onfrice 0.8 Onfrice Tuble 0.80 Sharp Cristel Weir 1.837 Broad Cristel Weir (SMM Facility and Dans Spillway) 1.7	
Q = CxAx(2gH)*0.5 where: Q = flow rate (m ³) C = constant A = area of opening(m ³) H = net head on the orifice g = Acceleration due to gravity Storage Volume (m3)	2 Year 548.513641	where; Q = flow rate (n D=orifice diame d=depth of flow 5 Year 737.71344	eter (m) ; above invert (m) 10 Year 864.98633;	1 1123.355		Figure 8.21 - Broad Cree 100 Year 1570.337053	H H	Application Typical C Values Onfrice 0.8 Onfrice Tuble 0.80 Sharp Cristel Weir 1.837 Broad Cristel Weir (SMM Facility and Dans Spillway) 1.7	
Q = C:XAX(2gH)*0.5 where: Q = flow rate (m ³) C = constant A = area of opening(m ³) H = net head on the orifice g = Acceleration due to gravity	548.513641	where; Q = flow rate (n D=orifice diame d=depth of flow	eter (m) above invert (m) 10 Year	1 1123.355	1370.229	Figure 8.21 - Broad Cree 100 Year 1570.337053	n n ted Weir	Application Typical C Values Onfrice 0.8 Onfrice Tuble 0.80 Sharp Cristel Weir 1.837 Broad Cristel Weir (SMM Facility and Dans Spillway) 1.7	
Q = CxAx(2gH)*0.5 where: Q = flow rate (m ³) C = constant A = area of opening(m ²) H = net head on the orflice g = Acceleration due to gravity Storage Volume (m3) Depth (m) Release Rate (m3/s)	548.513641 0.37686876	where; Q = flow rate (n D=orifice diame d=depth of flow 5 Year 737.71344	eter (m) ; above invert (m) 10 Year 864.98633;	1 1123.355	1370.229	Figure 8.21 - Broad Cree 100 Year 1570.337053 1.078935761	n Red Wer	Application Typical C Values Onfrice 0.8 Onfrice Tuble 0.80 Sharp Cristel Weir 1.837 Broad Cristel Weir (SMM Facility and Dans Spillway) 1.7	
Q = CxAx(2gH)*0.5 where: Q = flow rate (m ³) C = constant A = area of opening(m ²) H = net head on the orflice g = Acceleration due to gravity Storage Volume (m3) Depth (m) Release Rate (m3/s) Pond Storage Volume	548.513641 0.37686876 and Volume 2910.9	where; Q = flow rate (n D=orifice diame d=depth of flow 5 Year 737.71344 0.556862785 m3	eter (m) ; above invert (m) 10 Year 864.98633;	1 1123.355	1370.229	Figure 8.21 - Broad Cree 100 Year 1570.337053 1.078935761	nd War	Application Typical C Values Onfrice 0.8 Onfrice Tuble 0.80 Sharp Cristel Weir 1.837 Broad Cristel Weir (SMM Facility and Dans Spillway) 1.7	
Q = CxAx(2gH)*0.5 where: Q = flow rate (m ³) C = constant A = area of opening(m ²) H = net head on the orflice g = Acceleration due to gravity Storage Volume (m3) Depth (m) Release Rate (m3/s) Pond Dimensions Pond Storage Volume	548.513641 0.37686876 and Volume 2910.9 2 North Side	where; Q = flow rate (n D=orifice diame d=depth of flow 5 Year 737.71344 0.506862785 m3 m South Side	eter (m) ; above invert (m) 10 Year 864.98633;	1 1123.355	1370.229	Figure 8.21 - Broad Cree 100 Year 1570.337053 1.078935761	nd Wee	Application Typical C Values Onfrice 0.8 Onfrice Tuble 0.80 Sharp Cristel Weir 1.837 Broad Cristel Weir (SMM Facility and Dans Spillway) 1.7	
Q = CxAx(2gH)%0.5 where; Q = flow rate (m ³) C = constant A = area of opening(m ⁴) H = net head on the orlface g = Acceleration due to gravity Storage Volume (m3) Depth (m) Release Rate (m3/s) Pond Dorth Pond Depth bottom elev (perm)	548.513641 0.37686876 and Volume 2910.9 2 North Side 228.64	where; Q = flow rate (n D=orifice diame d=depth of flow 5 Year 737.71344 0.506862785 m3 m South Side 228.5	eter (m) ; above invert (m) 10 Year 864.98633;	1 1123.355	1370.229	Figure 8.21 - Broad Cree 100 Year 1570.337053 1.078935761	a di Nor	Application Typical C Values Onfrice 0.8 Onfrice Tuble 0.80 Sharp Cristel Weir 1.837 Broad Cristel Weir (SMM Facility and Dans Spillway) 1.7	
Q = CxAx(2gH)*0.5 where: Q = flow rate (m ³) C = constant A = area of opening(m ²) H = net head on the orflice g = Acceleration due to gravity Storage Volume (m3) Depth (m) Release Rate (m3/s) Pond Dimensions Pond Storage Volume	548.513641 0.37686876 and Volume 2910.9 2 North Side	where; Q = flow rate (n D=orifice diame d=depth of flow 5 Year 737.71344 0.506862785 m3 m3 m3 m3 m3 South Side 228.5 229.5	eter (m) ; above invert (m) 10 Year 864.98633;	1 1123.355	1370.229	Figure 8.21 - Broad Cree 100 Year 1570.337053 1.078935761	a di Nor	Application Typical C Values Onfrice 0.8 Onfrice Tuble 0.80 Sharp Cristel Weir 1.837 Broad Cristel Weir (SMM Facility and Dans Spillway) 1.7	
Q = CxAx[2gH]%0.5 where; Q = flow rate (m ³) C = constant A = area of opening(m ⁴) H = net head on the orlface g = Acceleration due to gravity g = Acceleration due to gravity Storage Volume (m3) Depth (m) Release Rate (m3/s) Pond Doth Pond Depth bottom elev (perm) top elev (perm) Top elec (active)	s48.513641 0.37686876 2910.9 2910.9 2 North Side 228.64 229.64	where; Q = flow rate (n D=orifice diame d=depth of flow 5 Year 737.71344 0.506862785 m3 m3 m South Side 228.5 229.5	eter (m) ; above invert (m) 10 Year 864.98633;	1 1123.355	1370.229	Figure 8.21 - Broad Cree 100 Year 1570.337053 1.078935761	a di Nor	Application Typical C Values Onfrice 0.8 Onfrice Tuble 0.80 Sharp Cristel Weir 1.837 Broad Cristel Weir (SMM Facility and Dans Spillway) 1.7	
Q = CxAx(2gH)*0.5 where: Q = flow rate (m ³) C = constant A = area of opening(m ⁴) H = net head on the orffce g = Acceleration due to gravity Storage Volume (m3) Depth (m) Release Rate (m3/s) Pond Dimensions Pond Storage Volume Pond Dottom elev (perm) top elev (perm) Top elec (active) 2. Swale geometry	548.513641 0.37686876 2910.9 2210.9 North Side 228.64 229.64 230.64	where; Q = flow rate (n D=orifice diame d=depth of flow 5 Year 737.71344 0.506862785 m3 m3 m South Side 228.5 229.5	eter (m) ; above invert (m) 10 Year 864.98633;	1 1123.355	1370.229	Figure 8.21 - Broad Cree 100 Year 1570.337053 1.078935761	I H	Application Typical C Values Onfrice 0.8 Onfrice Tuble 0.80 Sharp Cristel Weir 1.837 Broad Cristel Weir (SMM Facility and Dans Spillway) 1.7	
Q = CxAx(2gH)*0.5 where: Q = flow rate (m ³) C = constant A = area of opening(m ⁴) H = net head on the orfice g = Acceleration due to gravity Storage Volume (m3) Depth (m) Release Rate (m3/s) Pond Dimensions Pond Dimensions Pond Dorpth bottom elev (perm) Top elev (perm) Top elev (active) Catal Swale Depth, D1 Bottom Victor, Wb	548.513641 0.37686876 and Volume 2910.9 2 North Side 229.64 230.64 (m) 0.280 (m) 6.00	where; Q = flow rate (n D=orifice diame d=depth of flow 5 Year 737.71344 0.506862785 m3 m3 m South Side 228.5 229.5	eter (m) ; above invert (m) 10 Year 864.98633;	1 1123.355	1370.229	Figure 8.21 - Broad Cree 100 Year 1570.337053 1.078935761	R and Wite	Application Typical C Values Onfrice 0.8 Onfrice Tuble 0.80 Sharp Cristel Weir 1.837 Broad Cristel Weir (SMM Facility and Dans Spillway) 1.7	
Q = CxAx[2gH]%0.5 where; Q = flow rate (m ³) C = constant A = area of opening(m ⁴) H = net head on the orlice g = Acceleration due to gravity g = Acceleration due to gravity g = Acceleration due to gravity Storage Volume (m3) Depth (m) Release Rate (m3/s) Pond Depth Dottom elev (perm) Top elev (perm) Top elev (perm) Top elev (perty) Total Swale Depth, D 1	548.513641 0.37686876 and Volume 2910.9 2 North Side 228.64 229.64 230.64 (m) 0.280 (m) 6.00 (m) 1.00	where; Q = flow rate (n D=orifice diame d=depth of flow 5 Year 737.71344 0.506862785 m3 m3 m South Side 228.5 229.5	eter (m) ; above invert (m) 10 Year 864.98633;	1 1123.355	1370.229	Figure 8.21 - Broad Cree 100 Year 1570.337053 1.078935761	n of Nor	Application Typical C Values Onfrice 0.8 Onfrice Tuble 0.80 Sharp Cristel Weir 1.837 Broad Cristel Weir (SMM Facility and Dans Spillway) 1.7	
Q = CxAx[2gH]%0.5 where; Q = flow rate (m ³) C = constant A = area of opening(m ⁴) H = net head on the orlice g = Acceleration due to gravity g = Acceleration due to gravity Storage Volume (m3) Depth (m) Release: Rate (m3/s) Pond Storage Volume Pond Depth Dottom elev (perm) top elev (perm) Top elec (active) C Swale geometry Total Swale Depth, D 1 Bottom Width, Wt Side Silop, X 1 Side Silop	548.513641 0.37686876 and Volume 2910.9 2 North Side 228.64 230.64 230.64 (m) 0.280 (m) 6.60 (m) 6.66	where; Q = flow rate (n D=orifice diame d=depth of flow 5 Year 737.71344 0.506862785 m3 m3 m South Side 228.5 229.5	eter (m) ; above invert (m) 10 Year 864.98633;	1 1123.355	1370.229	Figure 8.21 - Broad Cree 100 Year 1570.337053 1.078935761	a de Neur	Application Typical C Values Onfrice 0.8 Onfrice Tuble 0.80 Sharp Cristel Weir 1.837 Broad Cristel Weir (SMM Facility and Dans Spillway) 1.7	
Q = CxAx[2gH]%0.5 where; Q = flow rate (m ³) C = constant A = area of opening(m ⁴) H = net head on the orlice g = Acceleration due to gravity g = Acceleration due to gravity g = Acceleration due to gravity g = Acceleration due to gravity Storage Volume (m3) Depth (m) Release: Rate (m3/s) Pond Depth Dond Depth Dond Depth Dottom elev (perm) Top elec (active) Costage geometry Competed Raming's roughness, n	548.513641 0.3768876 and Volume 2910.9 North Side 229.64 230.64 (m) 0.280 (m) 0.280 (m) 6.60 (m) 6.69 ing's Equation) 0.03	where: 0 = flow rate (n D=orifice diame d=depth of flow 5 Year 737.71344 0.50662785 10.500 10.	10 Year 10 Year 864,96633 0.59430851	1 1123.355	1370.229	Figure 8.21 - Broad Cree 100 Year 1570.337053 1.078935761	a and the	Application Typical C Values Onfrice 0.8 Onfrice Tuble 0.80 Sharp Cristel Weir 1.837 Broad Cristel Weir (SMM Facility and Dans Spillway) 1.7	
Q = CxAx[2gH]%0.5 where; Q = flow rate (m ³) C = constant A = area of opening(m ³) H = het head on the orlice g = Acceleration due to gravity g = Acceleration due to gravity g = Acceleration due to gravity G = Acceleration due to gravity Pond Depth (m) Release: Rate (m3/s) Pond Storage Volume Pond Depth Bottom elev (perm) top elev (perm) Top elec (active) Composite Maning's roughness, n Manning's roughness for grass base, n	548 513641 0.37658376 0.37658376 2910.9 2910.9 210.8 2210.64 223.64 (m) 0.280 (m) 0.280 (m) 6.00 (m) 6.56 (m) 6.030 ms_d 0.030	where:: Q = flow rel: D=crifice diame d=depth d flow 5 Year 737.71344 0.50662785	eter (m) above invert (m) 10 Year 864 98633 0.59430851	1 1123.355 7 0.771827	1370.229	Figure 8.21 - Broad Cree 100 Year 1570.337053 1.078935761	a and the	Application Typical C Values Onfrice 0.8 Onfrice Tuble 0.80 Sharp Cristel Weir 1.837 Broad Cristel Weir (SMM Facility and Dans Spillway) 1.7	
Q = CXxX[2gH]%0.5 where; Q = flow rate (m ³) C = constant A = area of opening(m ⁴) H = net head on the orlice g = Acceleration due to gravity g = Acceleration due to gravity g = Acceleration due to gravity g = Acceleration due to gravity Cong the two states of the acceleration Depth (m) Release: Rate (m3/s) Pond Depth Bottom elev (perm) top elev (perm) Top elec (active) Composite Marning's roughness, n Manning's roughness for grass base, n Manning's roughness for grass base, n Manning's roughness for grass base, n Base perimeter, P_state	sets.33641 0.37686876 0.37686876 0.37686876 2010 2010 2012 0.37686876 2012 0.37686876 2012 0.37686876 2012 0.37686876 2012 0.37686876 2012 0.37686876 2013 0.37586876 2014 0.37586876 2015 0.370876 2016 0.370876 2017 0.300 100 0.030 100 0.030 100 0.030 100 0.030 100 0.030 100 0.040	where: 0 = flow rate 0 = flow rate d=depth of flow 6 Year 737.71344 0.505682785 10.5056878 10.5056	ter (m) above invert (m) 10 Year 864 98633 0.59430851 0.59430851 0.59430851 eveeds per MTO Design Chart 2.01 re weeds per MTO Design Chart 2.01	1 1123.355 7 0.771827	1370.229	Figure 8.21 - Broad Cree 100 Year 1570.337053 1.078935761	a differ	Application Typical C Values Onfrice 0.8 Onfrice Tuble 0.80 Sharp Cristel Weir 1.837 Broad Cristel Weir (SMM Facility and Dans Spillway) 1.7	
Q = CxAx[2gH]%0.5 where; Q = flow rate (m ²) C = constant A = area of opening(m ²) H = net head on the orffice g = Acceleration due to gravity Storage Volume (m3) Depth (m) Release Rate (m3/s) Pond Storage Volume Pond Depth bottom elev (perm) top elev (perm) Top elec (active) C Swale geometry Total Stope, z (m) Storage Volumes for grass base, n Marning's roughness for grass base, s Stage primeter, P. base Side primeter, P. base Side primeter, P. base	548,513641 0.37688276 0.37688276 2310.9 2310.9 2310.9 2310.9 2310.9 (m) 0.280 (m) 0.280 (m) 0.280 (m) 6.00 (m) 0.559 (m) 0.590 (m) 0.030 (m) 0.440	where: 0 = flow ref. 0 = flow ref. d=depth of flow 5 Year 737 71344 0 505682785 m m South Side 228.5 230.5 Horton Method Grass with som Grass with som	ter (m) above invert (m) 10 Year 864 98633 0.59430851 0.59430851 0.59430851 eveeds per MTO Design Chart 2.01 re weeds per MTO Design Chart 2.01	1 1123.355 7 0.771827	1370.229	Figure 8.21 - Broad Cree 100 Year 1570.337053 1.078935761	I I I I I I I I I I I I I I I I I I I	Application Typical C Values Onfrice 0.8 Onfrice Tuble 0.80 Sharp Cristel Weir 1.837 Broad Cristel Weir (SMM Facility and Dans Spillway) 1.7	
Q = CXxX[2gH]%0.5 where; Q = flow rate (m ³) C = constant A = area of opening(m ⁴) H = net head on the orlice g = Acceleration due to gravity g = Acceleration due to gravity g = Acceleration due to gravity g = Acceleration due to gravity Cong the two states of the acceleration Depth (m) Release: Rate (m3/s) Pond Depth Bottom elev (perm) top elev (perm) Top elec (active) Composite Marning's roughness, n Manning's roughness for grass base, n Manning's roughness for grass base, n Manning's roughness for grass base, n Base perimeter, P_state	sets.33641 0.37686876 0.37686876 0.37686876 2010 2010 2012 0.37686876 2012 0.37686876 2012 0.37686876 2012 0.37686876 2012 0.37686876 2012 0.37686876 2013 0.37586876 2014 0.37586876 2015 0.370876 2016 0.370876 2017 0.300 100 0.030 100 0.030 100 0.030 100 0.030 100 0.030 100 0.040	where: 0 = flow ref. 0 = flow ref. d=depth of flow 5 Year 737 71344 0 505682785 m m South Side 228.5 230.5 Horton Method Grass with som Grass with som	ter (m) above invert (m) 10 Year 864 98633 0.59430851 0.59430851 0.59430851 eveeds per MTO Design Chart 2.01 re weeds per MTO Design Chart 2.01	1 1123.355 7 0.771827	1370.229	Figure 8.21 - Broad Cree 100 Year 1570.337053 1.078935761	n the	Application Typical C Values Onfrice 0.8 Onfrice Tuble 0.80 Sharp Cristel Weir 1.837 Broad Cristel Weir (SMM Facility and Dans Spillway) 1.7	

	.lo	b No.	Sheet	Rev.			
ARUP		287943-00	11	1			
ARUP		ember/Location		· · ·			
Job Title			Toronto				
Baldwin Aerodome		g. Ref.					
Calculation C3 - SWM Allowable Release Rate and Requi	red Storage	ade by N	IT Date 10-10-24	Chd. BS			
Runoff Coefficients							
Impervious Area	0.9	9					
Pervious Area	0.2						
Semi Impervious Area	0.5						
Wetlands Area	0.05	5					
Woodlots Area	0.42	2					
Pre-Development Conditions			Post-Development Conditions				Development Conditions Comparison
Catchment Area	1.44		Catchment Area		1.44		Catchment Area 0.00 ha 0
mpervious Area	0.04		Impervious Area		0.29		Impervious Area 0.24 ha 17
Pervious Area	1.25		Pervious Area		1.15		Pervious Area -0.09 ha -6
Semi Impervious (Gravel Road)	0.15		Semi Impervious (Gravel Road)		0.00		
Wetlands Area	0.00		Wetlands Area		0.00		
Woodlots Area	0.00		Woodlots Area		0.00		
Composite C Coeff.	0.25	2	Composite C Coeff.		0.34		
ALLOWABLE PEAK FLOW RATES							
Pre-Development Catchment Area	1.44	1 ha					
Pre-Development Time of Concentration (t)		min					
Pre-Development Rainfall Intensity (i = A / (t+B)^C)							
Storm Event	2-YR	5-YR	10-YR	25-YR	50-YR	100-YR	
4	675.586	843.019	976.898	1133.123	1251.473	1383.628	*Values taken from Town of Georgina Development
Bottom Width, Wb (m)	4.681	4.582	4.745	4.734	4.847	4.905	Design Criteria and Standards
c	0.78	0.763	0.76	0.756	0.753	0.754	https://www.georgina.ca/sites/default/files/page_ass
i (mm/hr)	32.1	42.9	50.2	59.1	65.9	72.5	
Release Rates (Q, in L/s)							
Storm Event	2-YR	5-YR	10-YR	25-YR	50-YR	100-YR	
Ca Value	1.00	1.00	1.00	1.10	1.20	1.25	
Rational Method Release Rates (Q = 2.78 CaCiA)	32.5	43.4	50.8	65.8	80.1	91.8	
Regulated Allowable Release Rates	NA	NA	NA	NA	NA	NA	
Design Allowable Release Rates	32.5	43.4	50.8	65.8	80.1	91.8	
Flow Area, A (m [°]) Wetted perimeter, Wp (m) Hydraulic Radius, Rh (m) Full flow capacity, Capacity , m3/s	1.44	1					
Post-Development Time of Concentration (t)	3:	l min					
Post-Development Rainfall Intensity (i = A / (t+B)^C)							
Storm Event	2-YR	5-YR	10-YR	25-YR	50-YR	100-YR	
i (mm/hr)	41.6	55.2	64.5	75.9	84.5	93.0	-
Required Storage Volume							
Release Flow Volume Calculation Method	Allowable Release		Duration				
Initial Storm Duration Time Step) min L min					
nine step							
Storm Event	2-YR	5-YR	10-YR	25-YR	50-YR	100-YR	
Critical Duration (min)	17	17	17	18	18	18	-
Uncontrolled Peak Flow (L/s)	56.6	75.2	87.8	113.6	138.0	158.2	
Volume (m ³)	52.0	68.0	78.8	101.6	122.8	140.7	
				100 Year Peal	Flow		-
Summary of Calculations	Storm Duration		Peak Flow (Q)	Runoff Volume	Release Flow Volume	Required Storage Volume	
	(min)	(mm/hr)	(L/s)	(m ³)	(m ³)	(m ³)	-1
	10	180.437595	306.9893059	184.1935836	55.07385276	129.1197308	4
	11	171.815742	292.320431	192.9314845	60.58123804	132.3502464	4
	12	164.095209	279.1850239	201.0132172	66.08862331	134.9245939	-1
	13	157.136364		208.5295094	71.59600859	136.9335008	
	14	150.827497	256.6118704	215.5539711	77.10339386	138.4505773	4
	15	145.078099	246.8300749	222.1470674	82.61077914	139.5362883	
	16	139.814017 134.973878	237.8739753 229.639157	228.3590163 234.2319402	88.11816442 93.62554969	140.2408519 140.6063905	
							MAX
	18	130.506427	222.0384142	239.8014873	99.13293497	140.6685523	
	19	126.368499	214.998309	245.0980723	104.6403202	140.457752	

			Job		Sheet No.		Rev
AR	ARUP		287943-00		2		1
1			Member/Location To		oronto		
Job Title	Baldwin Airport	Drg.					
Calculation	C3 - Outlet Structure	Made by	BS	Date	08-01-24	Chd.	

		Orifice I	lo. 1	Emer: Overfic		
	Elevation (m)	Depth Above Orifice Centroid (m)	Orifice No. 1 Flow (m ³ /s)	Depth Above Overflow Weir (m)	Overflow Weir Flow (m ³ /s)	Total Flow (m3/s)
	227.50	0.00	0.000	0.00	0.000	0.000
	227.55	0.00	0.000	0.00	0.000	0.000
	227.60	0.00	0.000	0.00	0.000	0.000
	227.65	0.00	0.000	0.00	0.000	0.000
	227.70	0.00	0.000	0.00	0.000	0.000
	227.75	0.00	0.000	0.00	0.000	0.000
	227.80	0.00	0.000	0.00	0.000	0.000
	227.85	0.00	0.000	0.00	0.000	0.000
	227.90	0.00	0.000	0.00	0.000	0.000
	227.95	0.00	0.000	0.00	0.000	0.000
	228.00	0.00	0.000	0.00	0.000	0.000
	228.05	0.00	0.000	0.00	0.000	0.000
	228.10	0.00	0.000	0.00	0.000	0.000
	228.15	0.00	0.000	0.00	0.000	0.000
	228.20	0.00	0.000	0.00	0.000	0.000
	228.25	0.00	0.000	0.00	0.000	0.000
	228.30	0.00	0.000	0.00	0.000	0.000
	228.35	0.00	0.000	0.00	0.000	0.000
	228.40	0.00	0.000	0.00	0.000	0.000
	228.45	0.00	0.000	0.00	0.000	0.000
	228.50	0.01	0.012	0.00	0.000	0.012
	228.55	0.06	0.033	0.00	0.000	0.033
	228.60	0.11	0.045	0.00	0.000	0.045
	228.65	0.16	0.054	0.02	0.004	0.058
100 Year	228.70	0.21	0.062	0.07	0.025	0.087
	228.75	0.26	0.070	0.12	0.056	0.126
	228.80	0.31	0.076	0.17	0.095	0.171
	228.85	0.36	0.082	0.22	0.139	0.221
Top of Road	228.90	0.41	0.087	0.27	0.189	0.277
	-					
	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year
Storage Volume (m3)	51.9661161	68.03203803	78.81701	101.6456	122.7828	140.66855
Depth (m)	0.11727853	0.153536534	0.177876	0.229397	0.277099	0.3174645
Release Rate (m3/s)						0.0917897
مادس؟	Dimensions					
Depth	0.6	m				
Bottom Width	1.5					
Side slope (H:V)	1					
Longitudinal slope	0.1					
Cross Area (m2)	1.26	m2				
Length	211	m				
Storage Volume	265.86	m2				

CONTROL CHAM	ER - ORIFICE CONTROL		OVERFLOW WEIR					
Orffice No. 1 - Orffice diameter (m)= 0.250 - Area (m²) = 0.0490 - Orifice C = 0.63 - Invert (m)= 228.37 - Orifice Centroid (m) = 228.49		Cverflow.Weir Covers - Length of Weir(m) 0.9 - Elevation of Weir Crest P (m) 228.63 Discharge Coefficient, C 1.5	Choose 1.2m MH - Height of Weir Crest P (m)	0.3				
$\label{eq:submerged} \begin{split} Submerged Orifice Equation: \\ & Q = CxAx(2gH)^{A}0.5 \\ \\ & Q = flow rate (m^{3}) \\ & C = constant \\ & A = area of opening(m^{2}) \\ & H = net head on the orifice \\ & g = Acceleration due to gravity \end{split}$	Un-Submergeo Unice Equation Flow Below Orfice Centrol): Q _w = 1.65([(pt'\D ²)/4)(2 ^{-cos¹} [(((D/2)- where: Q = flow rate (m ² /s) D=orfice diameter (m) d=depth of flow above invert (m)	BackCostel Wei A backcostel with the state-posted with the first the set is also enough to control were advancement of the state of the state of the state of the cost of the state of the	5.0 Typical Weir and Orifice Coefficients The following Labe identifies commonly used coefficients (C) Table 1 - Typical C Values for Weir and Orifice Calculations Application Orifice Orifice Table Sharp Crested Weir Waray Crested Weir SWM Facility and Dam Spillway) Broad Crested Weir (Mod Crossing)	for orifice and weir analysis. Typical C Values 0.63 0.80 1.837 1.7 1.5 1.5				

ARUP

JOB TITLE	Baldwin Aerodome
JOB NUMBER	287943-00
MADE BY	ME
CHECKED BY	JB
DATE	10/10/24
DATE	10/10/24
Description of spreadsheet	Swale hydraulics and stormwater basin sizing
Member/Location	Calgary
Report Reference	
Filename	J:\TOR\280000\287943-00\3 Design\3-06
	Calcs\SWM Calcs\[Swale Hydraulics and
	Stormwater Basin Sizing.xlsx]

CONTENTS OF SPREADSHEET

Sheet	Description
1	Swale hydraulics FlowMaster results
2	Swale capacity comparisons with 100-year release rates
3	Erosion control blanket options
4	C2 - Stormwater basin sizing
5	C1 - Temporary ESC pond sizing

AUTHORISATION OF LATEST VERSION

Type and method of check		
Signatures & dates:	Made by	ME
	Checked	JB
REVISIONS	Current Revision	1

ĺ	Rev.	Date	Made by	Checked	Description
	1	10/10/24	ME	JB	

10 B 2

		Northern Tancisia	(Dune - Selle 1				G 00 1
Swale 1		Unitarn Row Gradually Va	and Flows O Married	1			
Slope (%)	0.18	Selve For Decharge		0	Further Method	Vaccone Formale	
Slope (m/m)	0.0018	Save For Decharge		<i>•</i>	Presentitione	Marring Formula	271
Bottom Width (m)	2	Raughness Coefficient	0.025		Fiow Area	3.0	n ²
Minimum Depth (m)	1	Channel Slope	0.002	16701	Wetted Perimeter	4.8	
Normal Depth (mm)	1000	Normal Depth	1,000.0	nn HV	Hydrautic Radius: Teo Width	621.3	
Roughness Coefficient	0.025	Right Side Slope:	1.000	нv	Onitical Depth	630.8	
Left Side Slope (H:V)	1	Bofforn Width	2.00		Critical Slope	0.029	min
Right Side Slope (H:V)	1	Discharge	3,707.05	L/A	Velocity:	124	<i>m</i> 3
right olde otope (11.1)					Valocity Head Specific Energy	0.05	
Results:					Froude Number	0.456	
					Fige Type:	Subortical	
Discharge (L/s)	3,707.05				Protection and the		
Velocity (m/s)	1.24						
Check dam needed?	Maybe	Calculation Successful			010		

23.2.2 Swales and Open Channels

Swales and open channels can play an important role in both the major overland flow systems and the minor systems. They are to be designed to be aesthetically pleasing, safe, resistant to erocion and easy to maintain. Design velocities are to be calculated using Marming's equation and need to consider critical depth.

The following table provides acceptable values for Manning's "n":					
Grass Channel (>0.5 m deep)	0.025				
Grass Swale (<0.5 m deep)	0.030				
Rip-Rap Channel (>1 m deep)	0.035				
Rip-Rap Channel (<1 m deep)	0.040				

Generally, grassed surfaces are adequate for velocities up to 1.5 m/s and more robust erosion protection is required for velocities beyond this range.

Slope (%)	0.1	Uniform Row Gradually Va			
Slope (m/m)	0.001	Solve For: Decharge		0	Friction Method: N
Bottom Width (m)	1.5	Roughness Coefficient	0.025		Flow Area:
Minimum Depth (m)	0.6	Channel Slope	0.001	reini	Wetlad Parimeter:
Normal Depth (mm)	600	Normal Depth:	1,000	nn HV	Hydraulic Radus; Tea Width
Roughness Coefficient	0.025	Right Side Slope	1.000	HV	Critical Depth:
Left Side Slope (H:V)	1	Bottom Width	1.50		Critical Slope
Right Side Slope (H:V)	1	Discherge	858.73	LA	Vélocity: Vélociti Heat
Results:					Specific Energy Froude Number
Discharge (L/s)	856.73				Figur Type:
Velocity (m/s)	0.68				
Check dam needed?	No	Calculation Successful			

1	Uniform Flow Stadually Val						0 18
0.01	Solve For Discharge			2	Priction Method: Ver	ving Formula	101
0.5			_	-	112		
0.5	Rosponess Coefficient	0.038			Flow Area:	0.5	1988
	Channel Slope	0.010		(electron)	Wetlast Perimater	1.9	10
500	Normal Depth:	500.0		1919	Hydraulic Radius:	261.2	
0.03	Left Side Slope:	1.000		H.V.	Top Width:	1.50	
1	Right Side Slope	1.000		HX	Critical Depth	438.7	an
	Bottore Width:	0.50		18.	Critical Slope:	0.010	mim
1	Discharge:	681.03		La	Velacity:	1.36	0.0
					Velocity Heat	0.09	10
					Specific Energy	0.59	18
					Frouds Number	0.753	
681.03					Pipe Type	Suboritical	
1.36					2042 V 7762 V		

	SWALE D	MENSIONS	
SWALE NO.	LONG SLOPE (%)	BOTTON MOTH (m)	MINMUM DEPTH (m)
,	0.18	2.00	1.00
2	0.10	1.50	0.60
3	1.00	0.50	0.50
4	0.16	2.75	0.50
5	0.15 - ASSUMED CONSISTENT SLOPE	5.50	0.50
6	0.15 - ASSUMED CONSISTENT SLOPE	3.50	0.50

Swale 3

Slope (%) Slope (m/m) Bottom Width (m) Minimum Depth (m) Normal Depth (mm) Roughness Coefficient Left Side Slope (H:V) Right Side Slope (H:V)

Results: Discharge (L/s) Velocity (m/s) Check dam needed?

Slope (%)	0.16
Slope (m/m)	0.0016
Bottom Width (m)	2.75
Minimum Depth (m)	0.5
Normal Depth (mm)	500
Roughness Coefficient	0.03
Left Side Slope (H:V)	1
Right Side Slope (H:V)	1
Results:	1 157 00
Discharge (L/s)	1,157.02
Velocity (m/s)	0.71
Check dam needed?	No

Worksheet : Tagecoide					
istore flow Gradually Va	nud Flow 🕕 Messag	-			
Solve For Docharge		e	FridenWelhod N	larning Formula	
Rough Nexa Coefficient	0.036		Plan Area	1.0	at .
Channel Slope:	0.002	nm	Webbit Perimeter	4.2	18
Normal Depth:	500.8		Hydraulic Redius	396.2	
Laft Size Stope	1.000	ev.	Tap Wilm:	3.75	
Right Side Slope	1.000	85	Gritticel Depity	254.1	1919
Bottum Width:	271	m) -	Critical Slope:	0.016	
Discharge:	1,157.02	Ub	Velocity:	8.71	19/3
			Velocity Heat	8.03	
			Specific Energy	0.53	
			Proside Number:	136	
			Flow Type:	Subcritical	

updated to 0.6m to increase capacity

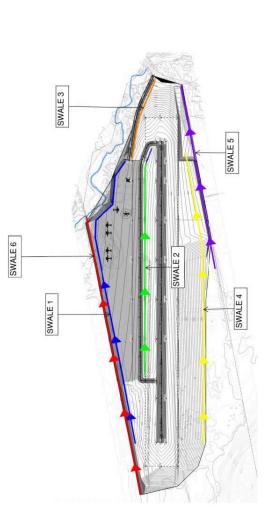
Swale 5	
Slope (%)	0.15
Slope (m/m)	0.0015
Bottom Width (m)	5.5
Minimum Depth (m)	0.6
Normal Depth (mm)	600
Roughness Coefficient	0.025
Left Side Slope (H:V)	1
Right Side Slope (H:V)	1
Results:	
Discharge (L/s)	3,010.39
Velocity (m/s)	0.82
Check dam needed?	No

Slope (%)	0.15	
Slope (m/m)	0.0015	
Bottom Width (m)	3.5	
Minimum Depth (m)	0.6	*updated to 0.6m to increase capacity
Normal Depth (mm)	600	
Roughness Coefficient	0.025	
Left Side Slope (H:V)	1	
Right Side Slope (H:V)	1	
Results:		
Discharge (L/s)	1,928.91	
Velocity (m/s)	0.78	
Check dam needed?	No	

Solve For: Discharge	~	0	Friction Method Ma	nning Formula	Υ.
Roughness Coefficient	0.030	li.	Flow Area.	3.7	m ²
Channel Slope	0.002	m/m	Wetted Perimeter.	7.2	
Normal Depth:	600.0	mm	Hydraulic Radius:	508.5	mm
Left Side Slope:	1,000	HV	Top Width:	6.70	
Right Side Slope:	1.000	H/V	Critical Depth:	306.7	mm
Bottom Width:	5.50	m	Critical Slope	0.014	m/m
Discharge:	3,010.39	L/s	Velocity:	0.82	m/s
			Velocity Head.	0.03	
			Specific Energy:	0.63	
			Froude Number:	0,355	
			Flow Type	Subcritical	

Calculation Successful.

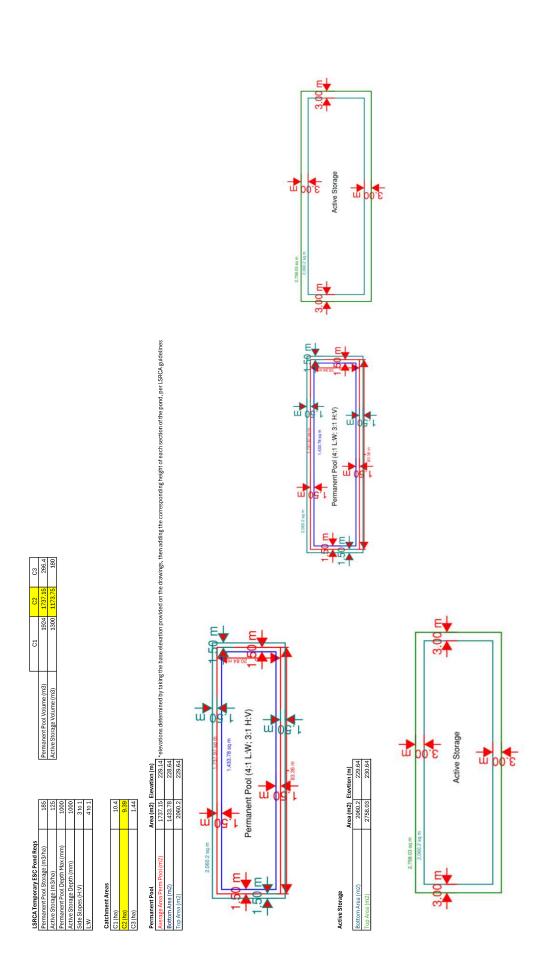
nform Row Gradually Va	ried Flow 🕕 Messag	es			
Solve For: Discharge	×	0	Friction Method: Mar	nning Formula	~
Roughness Coefficient	0.030	2(Flow Area:	2.5	m²
Channel Slope:	0.002	m/m	Wetted Perimeter:	5.2	m
Normal Depth:	600.0	mm	Hydraulic Radius:	473.3	mm
Left Side Slope	1.000	H:V	Top Width:	4.70	m
Right Side Slope:	1.000	H:V	Critical Depth:	304.8	mm
Bottom Width:	3.50		Critical Slope:	0.015	m/m
Discharge:	1,928.91	L/s	Velocity:	0.78	m/s
			Velocity Head:	0.03	m
			Specific Energy:	0.63	m
			Froude Number:	0.346	
			Flow Type:	Subcritical	

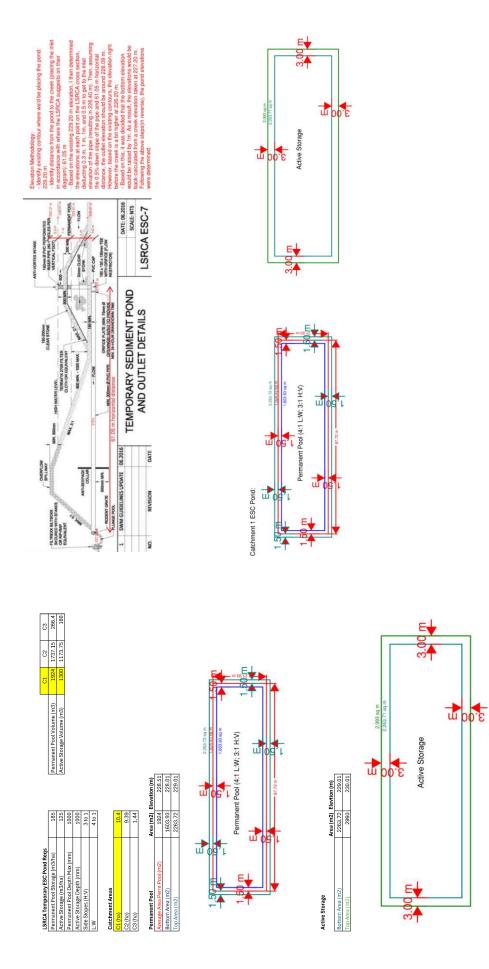

Swale #	1	2	8	4	5	9
Catchment #	1	T	8	2	external	external
Capacity (L/s)	3,707.05	856.73		681.03 1,157.02 3,010.39 1,928.91	3,010.39	1,928.91
100-Year Storm Release Rate (L/s)	1162.3	352.1	158.2	263.9	2860	1640
0k?	Yes	Yes	Yes	Yes	Yes	Yes

Doct_Develor

Post-Development	
C1b Release Rate 100-Yr Storm (L/s)	1162.3
C1a Release Rate 100-Yr Storm (L/s)	352.1
C2 Release Rate 100-Yr Storm (L/s)	263.9
C3 Release Rate 100-Yr Storm (L/s)	158.2
(from release rates and storage excel)	

External Catchments	
C5 100-Yr Storm (L/s)	2860
C6 100-Yr Storm (L/s)	1640
(from swale calculations excel)	





Material	Max Flow Velocity (m/s)	Swale 1?	Swale 2?	Swale 3?	Swale 4?	Swale 5?	Swale 6?	Swale 2? Swale 3? Swale 4? Swale 5? Swale 6? Functional Longevity Notes	Notes
FM200	3.8	3.8 Yes	Yes	Yes	Yes 1	Yes	Yes It	not specified	
S100 Straw Single Net	1.4	.4 Yes	Yes	Yes 7	Yes 1	Yes	Yes 3	12 mos	close to 1.36 m/s for swale 3
S200 Straw Double Net	2.1	2.1 Yes	Yes	Yes	Yes	Yes	Yes	12 mos	
SC200 Straw Coconut Double Net	2.6	2.6 Yes	Yes	Yes	Yes 1	Yes	Yes 2	24 mos	
C200 Coconut Double Net	2.7	2.7 Yes	Yes	Yes	Yes 1	Yes	Yes (36 mos	Selected on the basis of suitable max flow velocity and functional longevity
Wood Netfree	0.9	0.9 No	Yes	No	Yes 1	Yes	Yes 3	18 mos	Not suitable
W100 G Wood Single Net Green Fibre	2.1	2.1 Yes	Yes	Yes	Yes 1	Yes /	Yes 3	18 mos	
W200 G Wood Double Net Green Fibre	Not specified								
W300 G Wood Double Net	Not specified								

Model Specifications Source:

Erosion Control Blankets - Terrafix Geosynthetics Inc.

